
58

Chapter

A
n Economic Injury Level (EIL) is a measure-

ment of the fewest number of insect pests

that will cause economic damage to a crop 

or forest. It has been estimated that monitoring 

pest populations and establishing EILs can reduce

pesticide use by 30%–50%.

Accurate population estimates are crucial for

determining EILs. A population density of one in-

sect pest can be approximated by

D (t) � �
9
t
0

2
� � �

3
t
�

pests per plant, where t is the number of days

since initial infestation. What is the rate of change

of this population density when the population

density is equal to the EIL of 20 pests per plant?

Section 2.4 can help answer this question.

Limits and 
Continuity

2
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Chapter 2 Overview

The concept of limit is one of the ideas that distinguish calculus from algebra and
trigonometry.

In this chapter, we show how to define and calculate limits of function values. The cal-
culation rules are straightforward and most of the limits we need can be found by substitu-
tion, graphical investigation, numerical approximation, algebra, or some combination of
these.

One of the uses of limits is to test functions for continuity. Continuous functions arise
frequently in scientific work because they model such an enormous range of natural be-
havior. They also have special mathematical properties, not otherwise guaranteed.

Rates of Change and Limits

Average and Instantaneous Speed
A moving body’s average speed during an interval of time is found by dividing the dis-
tance covered by the elapsed time. The unit of measure is length per unit time—kilometers
per hour, feet per second, or whatever is appropriate to the problem at hand.

EXAMPLE 1 Finding an Average Speed

A rock breaks loose from the top of a tall cliff. What is its average speed during the first
2 seconds of fall?

SOLUTION

Experiments show that a dense solid object dropped from rest to fall freely near the sur-
face of the earth will fall

y � 16t2

feet in the first t seconds. The average speed of the rock over any given time interval is
the distance traveled, �y, divided by the length of the interval �t. For the first 2 seconds
of fall, from t � 0 to t � 2, we have

�
�
�

y
t

� ��
16�2�

2

2

�

�

0
16�0�2

�� 32 �
s
f
e
t
c

� . Now try Exercise 1.

EXAMPLE 2 Finding an Instantaneous Speed

Find the speed of the rock in Example 1 at the instant t � 2.

SOLUTION

Solve Numerically We can calculate the average speed of the rock over the interval
from time t � 2 to any slightly later time t � 2 � h as

�
�
�

y
t

� � . (1)

We cannot use this formula to calculate the speed at the exact instant t � 2 because that
would require taking h � 0, and 0�0 is undefined. However, we can get a good idea of
what is happening at t � 2 by evaluating the formula at values of h close to 0. When we
do, we see a clear pattern (Table 2.1 on the next page). As h approaches 0, the average
speed approaches the limiting value 64 ft/sec.

16�2 � h�2 � 16�2�2

���
h
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2.1

What you’ll learn about

• Average and Instantaneous
Speed

• Definition of Limit

• Properties of Limits

• One-sided and Two-sided 
Limits

• Sandwich Theorem

. . . and why

Limits can be used to describe
continuity, the derivative, and the
integral: the ideas giving the
foundation of calculus.

Free Fall

Near the surface of the earth, all bodies

fall with the same constant acceleration.

The distance a body falls after it is re-

leased from rest is a constant multiple

of the square of the time fallen. At least,

that is what happens when a body falls

in a vacuum, where there is no air to

slow it down. The square-of-time rule

also holds for dense, heavy objects like

rocks, ball bearings, and steel tools dur-

ing the first few seconds of fall through

air, before the velocity builds up to

where air resistance begins to matter.

When air resistance is absent or in-

significant and the only force acting on

a falling body is the force of gravity, we

call the way the body falls free fall.

continued
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Confirm Algebraically If we expand the numerator of Equation 1 and simplify, we
find that

�
�
�

y
t

� � �

� �
64h �

h
16h2

� � 64 � 16h.

For values of h different from 0, the expressions on the right and left are equivalent and
the average speed is 64 � 16h ft/sec. We can now see why the average speed has the
limiting value 64 � 16(0) � 64 ft/sec as h approaches 0. Now try Exercise 3.

Definition of Limit
As in the preceding example, most limits of interest in the real world can be viewed as nu-
merical limits of values of functions. And this is where a graphing utility and calculus
come in. A calculator can suggest the limits, and calculus can give the mathematics for
confirming the limits analytically.

Limits give us a language for describing how the outputs of a function behave as the 
inputs approach some particular value. In Example 2, the average speed was not defined at
h � 0 but approached the limit 64 as h approached 0. We were able to see this numerically
and to confirm it algebraically by eliminating h from the denominator. But we cannot al-
ways do that. For instance, we can see both graphically and numerically (Figure 2.1) that
the values of f (x) � (sin x)�x approach 1 as x approaches 0.

We cannot eliminate the x from the denominator of (sin x)�x to confirm the observation
algebraically. We need to use a theorem about limits to make that confirmation, as you will
see in Exercise 75.

16�4 � 4h � h2� � 64
���

h
16�2 � h�2 � 16�2�2

���
h
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Figure 2.1 (a) A graph and (b) table of
values for f �x� � �sin x��x that suggest the
limit of f as x approaches 0 is 1.

Table 2.1 Average Speeds over
Short Time Intervals Starting at 
t � 2

�
�
�

y
t

� �

Length of Average Speed
Time Interval, for Interval

h (sec) �y��t (ft/sec)

1 80
0.1 65.6
0.01 64.16
0.001 64.016
0.0001 64.0016
0.00001 64.00016

16�2 � h�2 � 16�2�2

���
h

[–2p, 2p] by [–1, 2]

(a)

X

Y1 = sin(X)/X

–.3
–.2
–.1
0
.1
.2
.3

.98507

.99335

.99833
ERROR
.99833
.99335
.98507

Y1

(b)

The sentence limx→c f �x� � L is read, “The limit of f of x as x approaches c equals L.”
The notation means that the values f (x) of the function f approach or equal L as the values
of x approach (but do not equal) c. Appendix A3 provides practice applying the definition
of limit.

We saw in Example 2 that limh→0 �64 � 16h� � 64.
As suggested in Figure 2.1,

lim
x→0

�
sin

x
x

� � 1.

Figure 2.2 illustrates the fact that the existence of a limit as x→c never depends on how
the function may or may not be defined at c. The function f has limit 2 as x→1 even though
f is not defined at 1. The function g has limit 2 as x→1 even though g�1� � 2. The function
h is the only one whose limit as x→1 equals its value at x � 1.

DEFINITION Limit

Assume f is defined in a neighborhood of c and let c and L be real numbers. The
function f has limit L as x approaches c if, given any positive number e, there is a
positive number d such that for all x,

0 	 �x � c � 	 d⇒ � f �x� � L � 	 
.

We write

lim
x→c

f �x� � L.
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Section 2.1 Rates of Change and Limits 61

THEOREM 1 Properties of Limits

If L, M, c, and k are real numbers and

lim
x→c

f �x� � L and lim
x→c

g�x� � M, then

1. Sum Rule: lim
x→c

� f �x� � g�x�� � L � M

The limit of the sum of two functions is the sum of their limits.

2. Difference Rule: lim
x→c

� f �x� � g�x�� � L � M

The limit of the difference of two functions is the difference of their limits.

3. Product Rule: lim
x→c

� f �x� • g�x�� � L • M

The limit of a product of two functions is the product of their limits.

4. Constant Multiple Rule: lim
x→c

�k • f �x�� � k • L

The limit of a constant times a function is the constant times the limit of the
function.

5. Quotient Rule: lim
x→c

�
g
f �

�
x
x
�
�

� � �
M
L

� , M � 0

The limit of a quotient of two functions is the quotient of their limits, provided
the limit of the denominator is not zero.

continued

Properties of Limits
By applying six basic facts about limits, we can calculate many unfamiliar limits from
limits we already know. For instance, from knowing that

lim
x→c

�k� � k Limit of the function with constant value k

and

lim
x→c

�x� � c, Limit of the identity function at x � c

we can calculate the limits of all polynomial and rational functions. The facts are listed in
Theorem 1.

2

1

1–1 0

y

x

2

1

1–1 0

y

x

2

1

1–1 0

y

x

 f(x) =(a)
,

(b)x2 – 1
x – 1

x2 – 1
x – 1

x ≠ 1

1, x = 1
x + 1 g(x) = (c) h(x) =

Figure 2.2 lim
x→1

f �x� � lim
x→1

g�x� � lim
x→1

h�x� � 2
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Here are some examples of how Theorem 1 can be used to find limits of polynomial
and rational functions.

EXAMPLE 3 Using Properties of Limits

Use the observations limx→c k � k and  limx→c x � c, and the properties of limits to
find the following limits.

(a) lim
x→c

�x3 � 4x2 � 3� (b) lim
x→c

�
x4

x
�

2
x
�

2

5
� 1

�

SOLUTION

(a) lim
x→c

�x3 � 4x2 � 3� � lim
x→c

x3 � lim
x→c

4x2 � lim
x→c

3 Sum and Difference Rules

� c3 � 4c2 � 3 Product and Constant 

(b) lim
x→c

�
x4

x
�

2
x
�

2

5
� 1

� ��
lim
x→c

lim
x→

�x

c

4

�x

�

2

x

�

2

5

�

�

1�
� Quotient Rule

� Sum and Difference Rules

� �
c4

c
�

2
c
�

2

5
� 1

� Product Rule

Now try Exercises 5 and 6.

Example 3 shows the remarkable strength of Theorem 1. From the two simple observa-
tions that limx→c k � k and limx→c x � c, we can immediately work our way to limits of
polynomial functions and most rational functions using substitution.

lim
x→c

x4 � lim
x→c

x2 � lim
x→c

1
���

lim
x→c

x2 � lim
x→c

5

62 Chapter 2 Limits and Continuity

6. Power Rule: If r and s are integers, s � 0, then

lim
x→c

� f �x��r�s � Lr�s

provided that Lr�s is  a real number.

The limit of a rational power of a function is that power of the limit of the func-
tion, provided the latter is a real number.

THEOREM 2 Polynomial and Rational Functions

1. If f �x� � anxn � an�1xn�1 � … � a0 is any polynomial function and c is any
real number, then

lim
x→c

f �x� � f �c� � ancn � an�1cn�1 � … � a0.

2. If f �x� and g(x) are polynomials and c is any real number, then

lim
x→c

�
g
f �

�
x
x
�
�

� � �
g
f �

�
c
c
�
�

� , provided that g�c� � 0.

Multiple Rules

5128_CH02_58-97.qxd  1/13/06  9:03 AM  Page 62



EXAMPLE 4 Using Theorem 2

(a) lim
x→3

�x2�2 � x�� � �3�2�2 � 3� � �9

(b) lim
x→2

�
x2 �

x �

2x
2
� 4

� ��
�2�2 �

2 �

2�2
2
� � 4

�� �
1
4
2
� � 3

Now try Exercises 9 and 11.

As with polynomials, limits of many familiar functions can be found by substitution at
points where they are defined. This includes trigonometric functions, exponential and log-
arithmic functions, and composites of these functions. Feel free to use these properties.

EXAMPLE 5 Using the Product Rule

Determine lim
x→0

�
tan

x
x

� .

SOLUTION

Solve Graphically The graph of f �x� � �tan x��x in Figure 2.3 suggests that the limit
exists and is about 1.

Confirm Analytically Using the analytic result of Exercise 75, we have

lim
x→0

�
tan

x
x

� � lim
x→0 (�

sin
x

x
� • �

co
1
s x
�) tan x = �

c

s

o

in

s

x
x

�

� lim
x→0

�
sin

x
x

� • lim
x→0

�
co

1
s x
� Product Rule

� 1 • �
co

1
s 0
� � 1 • �

1
1

� � 1.

Now try Exercise 27.

Sometimes we can use a graph to discover that limits do not exist, as illustrated by 
Example 6.

EXAMPLE 6 Exploring a Nonexistent Limit

Use a graph to show that

lim
x→2

�
x
x

3

�

�

2
1

�

does not exist.

SOLUTION

Notice that the denominator is 0 when x is replaced by 2, so we cannot use substitution
to determine the limit. The graph in Figure 2.4 of f (x) � (x3 � 1���x � 2) strongly sug-
gests that as x→2 from either side, the absolute values of the function values get very
large. This, in turn, suggests that the limit does not exist.

Now try Exercise 29.

One-sided and Two-sided Limits
Sometimes the values of a function f tend to different limits as x approaches a number c
from opposite sides. When this happens, we call the limit of f as x approaches c from the

Section 2.1 Rates of Change and Limits 63

[–p, p] by [–3, 3]

Figure 2.3 The graph of 

f �x� � �tan x��x

suggests that f �x�→1 as x→0. (Example 5)

[–10, 10] by [–100, 100]

Figure 2.4 The graph of

f (x) � (x3 � 1���x � 2) 

obtained using parametric graphing to pro-
duce a more accurate graph. (Example 6)
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right the right-hand limit of f at c and the limit as x approaches c from the left the left-
hand limit of f at c. Here is the notation we use:

right-hand: lim
x→c�

f �x� The limit of f as x approaches c from the right.

left-hand: lim
x→c�

f �x� The limit of f as x approaches c from the left.

EXAMPLE 7 Function Values Approach Two Numbers

The greatest integer function f (x) � int x has different right-hand and left-hand limits at
each integer, as we can see in Figure 2.5. For example,

lim
x→3�

int x � 3 and lim
x→3�

int x � 2.

The limit of int x as x approaches an integer n from the right is n, while the limit as x ap-
proaches n from the left is n – 1.

Now try Exercises 31 and 32.

We sometimes call limx→c f �x� the two-sided limit of f at c to distinguish it from the
one-sided right-hand and left-hand limits of f at c. Theorem 3 shows how these limits are 
related.

64 Chapter 2 Limits and Continuity

THEOREM 3 One-sided and Two-sided Limits

A function f(x) has a limit as x approaches c if and only if the right-hand and left-
hand limits at c exist and are equal. In symbols,

lim
x→c

f �x� � L ⇔ lim
x→c�

f �x� � L and lim
x→c�

f �x� � L.

Thus, the greatest integer function f (x) � int x of Example 7 does not have a limit as
x→3 even though each one-sided limit exists.

EXAMPLE 8 Exploring Right- and Left-Hand Limits

All the following statements about the function y � f (x) graphed in Figure 2.6 are true.

At x � 0: lim
x→0�

f �x� � 1.

At x � 1: lim
x→1�

f �x� � 0 even though  f �1� � 1,

lim
x→1�

f �x� � 1,

f has no limit as x→1. (The right- and left-hand limits at 1 are not equal, so
limx→1 f �x� does not exist.)

At x � 2: lim
x→2�

f �x� � 1,

lim
x→2�

f �x� � 1,

lim
x→2

f �x� � 1 even though f �2� � 2.

At x � 3: lim
x→3�

f �x� � lim
x→3�

f �x� � 2 � f �3� � lim
x→3

f �x�.

At x � 4: lim
x→4�

f �x� � 1.

At noninteger values of c between 0 and 4, f has a limit as x→c.
Now try Exercise 37.

y = int x

x

y

3

3

21

2

1

–2

–1 4

4

Figure 2.5 At each integer, the greatest
integer function y � int x has different
right-hand and left-hand limits. 
(Example 7)

2

1

0 1 2 3 4
x

y

y = f(x)

On the Far Side

If f is not defined to the left of x � c,
then f does not have a left-hand limit at

c. Similarly, if f is not defined to the

right of x � c, then f does not have a

right-hand limit at c.

Figure 2.6 The graph of the function

�x � 1, 0 � x 	 1
1, 1 � x 	 2

f �x� � {2, x � 2
x � 1, 2 	 x � 3
�x � 5, 3 	 x � 4.

(Example 8)
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Sandwich Theorem
If we cannot find a limit directly, we may be able to find it indirectly with the Sandwich
Theorem. The theorem refers to a function f whose values are sandwiched between the
values of two other functions, g and h. If g and h have the same limit as x→c, then f has
that limit too, as suggested by Figure 2.7.

Section 2.1 Rates of Change and Limits 65

THEOREM 4 The Sandwich Theorem

If g�x� � f �x� � h�x� for all x � c in some interval about c, and

lim
x→c

g�x� � lim
x→c

h�x� � L ,

then

lim
x→c

f �x� � L.

y

x

g

f
h

L

O c

Figure 2.7 Sandwiching f between g
and h forces the limiting value of f to be
between the limiting values of g and h.

[–0.2, 0.2] by [–0.02, 0.02]

Figure 2.8 The graphs of y1 � x2,
y2 � x2 sin �1�x�, and y3 � �x2. Notice
that y3 � y2 � y1. (Example 9)

EXAMPLE 9 Using the Sandwich Theorem

Show that lim
x→0

�x2 sin �1�x�� � 0.

SOLUTION

We know that the values of the sine function lie between –1 and 1. So, it follows that

�x2 sin �
1
x

� � � �x2 � • �sin �
1
x

� � � �x2 � • 1 � x2

and

�x2 � x2 sin �
1
x

� � x2.

Because lim
x→0

��x2� � lim
x→0

x2 � 0, the Sandwich Theorem gives

lim
x→0 (x2 sin �

1
x

� ) � 0.

The graphs in Figure 2.8 support this result.

Quick Review 2.1 (For help, go to Section 1.2.)

In Exercises 1–4, find f(2).

1. f �x� � 2x3 � 5x2 � 4 0

2. f �x� � �
4
x
x
3

2

�

�

4
5

� �
1
1
1
2
�

3. f �x� � sin (p �
2
x

� ) 0

3x � 1, x 	 2

4. f �x� � {�
x2

1
� 1
� , x � 2 �

1
3

�

In Exercises 5–8, write the inequality in the form a 	 x 	 b.

5. �x � 	 4 �4 	 x 	 4

6. �x � 	 c2 �c2 	 x 	 c2

7. �x � 2 � 	 3 �1 	 x 	 5

8. �x � c � 	 d 2 c � d 2 	 x 	 c � d 2

In Exercises 9 and 10, write the fraction in reduced form.

9. �
x2 �

x
3
�

x
3
� 18
� x �6

10. �
2x

2
2
x
�

2 �

x �

x
1

� �
x �

x
1

�
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66 Chapter 2 Limits and Continuity

In Exercises 1–4, an object dropped from rest from the top of a tall
building falls y � 16t2 feet in the first t seconds.

1. Find the average speed during the first 3 seconds of fall. 48 ft/sec

2. Find the average speed during the first 4 seconds of fall. 64 ft/sec

3. Find the speed of the object at t � 3 seconds and confirm your
answer algebraically. 96 ft/sec

4. Find the speed of the object at t � 4 seconds and confirm your
answer algebraically. 128 ft/sec

In Exercises 5 and 6, use limx→c k � k, limx→c x � c, and the proper-
ties of limits to find the limit.

5. lim
x→c

(2x3 � 3x2 � x � 1) 2c3 � 3c2 � c � 1

6. lim
x→c

�
x4 �

x2
x
�

3 �

9
1

� �
c4 �

c2

c

�

3 �

9

1
�

In Exercises 7–14, determine the limit by substitution. Support graph-
ically.

7. lim
x→�1�2

3x2�2x � 1� ��
3
2

� 8. lim
x→�4

�x � 3�1998 1

9. lim
x→1

�x3 � 3x2 � 2x � 17��15 10. lim
y→2

�
y2 �

y �

5y
2
� 6

� 5

11. lim
y→�3

�
y2 �

y2
4
�

y
3
� 3

� 0 12. lim
x→1�2

int x 0

13. lim
x→�2

�x � 6�2�3 4 14. lim
x→2

�x	�	 3	 �5	

In Exercises 15–18, explain why you cannot use substitution to deter-
mine the limit. Find the limit if it exists.

15. lim
x→�2

�x	�	 2	 16. lim
x→0

�
x
1
2�

17. lim
x→0

18. lim
x→0

�
�4 � x

x
�2 � 16
�

In Exercises 19–28, determine the limit graphically. Confirm alge-
braically.

19. lim
x→1

�
x
x
2
�

�

1
1

� �
1
2

� 20. lim
t→2

�
t2 �

t2 �

3t �

4
2

� �
1
4

�

21. lim
x→0

�
3
5
x
x
4

3

�

�

1
8
6
x
x

2

2� ��
1
2

� 22. lim
x→0

��
1
4

�

23. lim
x→0

�
�2 � x

x
�3 � 8
� 12 24. lim

x→0
�
sin

x
2x
� 2

25. lim
x→0

�
2x

si
2
n
�

x
x

� �1 26. lim
x→0

�
x �

x
sin x
� 2

27. lim
x→0

�
sin

x

2 x
� 0 28. lim

x→0
�
3
s
s
in
in

3
4
x
x

� 4

�
2 �

1
x

� � �
1
2

�

��
x

�x �
�
x

In Exercises 29 and 30, use a graph to show that the limit does not
exist.

29. lim
x→1

�
x
x

2

�

�

1
4

� 30. lim
x→2

�
x
x
2
�

�

1
4

�

In Exercises 31–36, determine the limit.

31. lim
x→0�

int x 0 32. lim
x→0�

int x �1

33. lim
x→0.01

int x 0 34. lim
x→2�

int x 1

35. lim
x→0�

�
�

x
x �
� 1 36. lim

x→0�
�
�

x
x �
� �1

In Exercises 37 and 38, which of the statements are true about the
function y � f (x) graphed there, and which are false?

37.

(a) lim
x→�1�

f �x� � 1 True (b) lim
x→0�

f �x� � 0 True

(c) lim
x→0�

f �x� � 1 False (d) lim
x→0�

f �x� � lim
x→0�

f �x� True

(e) lim
x→0

f �x� exists True (f) lim
x→0

f �x� � 0 True

(g) lim
x→0

f �x� � 1 False (h) lim
x→1

f �x� � 1 False

(i) lim
x→1

f �x� � 0 False ( j) lim
x→2�

f �x� � 2 False

38.

(a) lim
x→�1�

f �x� � 1 True (b) lim
x→2

f �x� does not exist. False

(c) lim
x→2

f �x� � 2 False (d) lim
x→1�

f �x� � 2 True

(e) lim
x→1�

f �x� � 1 True (f) lim
x→1

f �x� does not exist. True

(g) lim
x→0�

f �x� � lim
x→0�

f �x� True

(h) lim
x→c

f �x� exists at every c in ��1, 1�. True

(i) lim
x→c

f �x� exists at every c in �1, 3�. True

Section 2.1 Exercises

x

y

321

2

1

–1

y � f (x)

0

–1 0 1

1

2

y

y = f(x)

x

29. Answers will vary. One possible graph is given by the window [�4.7, 4.7] by [�15, 15] with Xscl � 1 and Yscl � 5.
30. Answers will vary. One possible graph is given by the window [�4.7, 4.7] by [�15, 15] with Xscl � 1 and Yscl � 5.

Expression not defined at x � 0. There is no limit.

Expression not defined at
x � 0. There is no limit.

Expression not
defined at x � 0.
Limit � 8.

Expression not
defined at
x � �2. There 
is no limit.
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In Exercises 39–44, use the graph to estimate the limits and value of
the function, or explain why the limits do not exist.

39. (a) lim
x→3�

f �x� 3

(b) lim
x→3�

f �x� �2

(c) lim
x→3

f �x� No limit

(d) f �3� 1

40. (a) lim
t→�4�

g�t� 5

(b) lim
t→�4�

g�t� 2

(c) lim
t→�4

g�t� No limit

(d) g��4� 2

41. (a) lim
h→0�

f �h� �4

(b) lim
h→0�

f �h� �4

(c) lim
h→0

f �h� �4

(d) f �0� �4

42. (a) lim
s→�2�

p�s� 3

(b) lim
s→�2�

p�s� 3

(c) lim
s→�2

p�s� 3

(d) p��2� 3

43. (a) lim
x→0�

F�x� 4

(b) lim
x→0�

F�x� �3

(c) lim
x→0

F�x� No limit

(d) F�0� 4

44. (a) lim
x→2�

G�x� 1

(b) lim
x→2�

G�x� 1

(c) lim
x→2

G�x� 1

(d) G�2� 3
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In Exercises 45–48, match the function with the table.

45. y1 � �
x2

x
�

�

x
1
� 2

� (c) 46. y1 � �
x2

x
�

�

x
1
� 2

�  (b)

47. y1 � �
x2 �

x �

2x
1
� 1

� (d) 48. y1 � �
x2

x
�

�

x
1
� 2

� (a)

In Exercises 49 and 50, determine the limit.

49. Assume that lim
x→4

f �x� � 0  and  lim
x→4

g�x� � 3.

(a) lim
x→4

�g�x� � 3� 6 (b) lim
x→4

x f �x� 0

(c) lim
x→4

g2�x� 9 (d) lim
x→4

�
f �x

g
�
�x
�

�
1

� �3

50. Assume that lim
x→b

f �x� � 7 and  lim
x→b

g�x� � �3.

(a) lim
x→b

� f �x� � g�x�� 4 (b) lim
x→b

� f �x� • g�x�� �21

(c) lim
x→b

4 g�x� �12 (d) lim
x→b

�
g
f �
�
x
x
�
�

� ��
7
3

�

In Exercises 51–54, complete parts (a), (b), and (c) for the piecewise-
defined function.

(a) Draw the graph of f.

(b) Determine limx→c� f �x� and  limx→c� f �x�.

(c) Writing to Learn Does limx→c f �x� exist? If so, what is it?
If not, explain.

3 � x, x 	 2
51. c � 2, f �x� � { �

2
x

� � 1, x 
 2

52.
3 � x, x 	 2

c � 2, f �x� � {2, x � 2
x�2, x 
 2

�
x �

1
1

� , x 	 1
53. c � 1, f �x� � {

x3 � 2x � 5, x � 1

54.
1 � x2, x � �1

c � �1, f �x� � {2, x � �1

3 x

y

y = f(x)

t

y

y = g(t)

–4

2

h

y
y = f(h)

y

s
y = p(s)

–2

y

x

y = F(x)
4

y

x

y = G(x)

2

X

X = .7

.7

.8

.9
1
1.1
1.2
1.3

–.4765
–.3111
–.1526
0
.14762
.29091
.43043

Y1

(a)

X

X = .7

.7

.8

.9
1
1.1
1.2
1.3

7.3667
10.8
20.9
ERROR
–18.9
–8.8
–5.367

Y1

(b)

X

X = .7

.7

.8

.9
1
1.1
1.2
1.3

2.7
2.8
2.9
ERROR
3.1
3.2
3.3

Y1

(c)

X

X = .7

.7

.8

.9
1
1.1
1.2
1.3

–.3
–.2
–.1
ERROR
.1
.2
.3

Y1

(d)

(b) Right-hand: 2   Left-hand: 1
(c) No, because the two one-sided
limits are different.

(b) Right-hand: 1  Left-hand: 1
(c) Yes. The limit is 1.

(b) Right-hand: 4  Left-hand:
no limit     (c) No, because the
left-hand limit doesn’t exist.

(b) Right-hand: 0  Left-hand: 0
(c) Yes. The limit is 0.
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In Exercises 55–58, complete parts (a)–(d) for the piecewise-defined
function.

(a) Draw the graph of f.

(b) At what points c in the domain of f does limx→c f �x� exist?

(c) At what points c does only the left-hand limit exist?

(d) At what points c does only the right-hand limit exist?

55.
sin x, �2p� x 	 0

f �x� � {cos x, 0 � x � 2p

56.
cos x, �p � x 	 0

f �x� � {sec x, 0 � x � p

57.
�1	 �	 x	2	, 0 � x 	 1

f �x� � {1, 1 � x 	 2
2, x � 2

58.
x, �1 � x 	 0, or 0 	 x � 1

f �x� � {1, x � 0
0, x 	 �1, or x 
 1

In Exercises 59–62, find the limit graphically. Use the Sandwich
Theorem to confirm your answer.

59. lim
x→0

x sin x 0 60. lim
x→0

x2 sin x 0

61. lim
x→0

x2 sin �
x
1
2� 0 62. lim

x→0
x2 cos �

x
1
2� 0

63. Free Fall A water balloon dropped from a window high above
the ground falls y � 4.9t2 m in t sec. Find the balloon’s

(a) average speed during the first 3 sec of fall. 14.7 m/sec

(b) speed at the instant t � 3. 29.4 m/sec

64. Free Fall on a Small Airless Planet A rock released from
rest to fall on a small airless planet falls y � gt2 m in t sec, g a
constant. Suppose that the rock falls to the bottom of a crevasse
20 m below and reaches the bottom in 4 sec.

(a) Find the value of g. g � �
5
4

�

(b) Find the average speed for the fall. 5 m/sec

(c) With what speed did the rock hit the bottom? 10 m/sec

Standardized Test Questions
You should solve the following problems without using a
graphing calculator.

65. True or False If lim
x→c�

f (x) � 2 and  lim
x→c�

f (x) � 2, then 

lim
x→c

f (x) � 2. Justify your answer. True. Definition of limit.

66. True or False lim
x→0

�
x �

x
sin x
� � 2. Justify your answer.

In Exercises 67–70, use the following function.

2 � x, x � 1
f �x� � { �

2
x

� � 1, x 
 1

67. Multiple Choice What is the value of lim
x→1�

f (x)? C

(A) 5�2 (B) 3�2 (C) 1 (D) 0 (E) does not exist

68 Chapter 2 Limits and Continuity

68. Multiple Choice What is the value of limx→1� f (x)? B

(A) 5�2 (B) 3�2 (C) 1 (D) 0 (E) does not exist

69. Multiple Choice What is the value of limx→1 f (x)? E

(A) 5�2 (B) 3�2 (C) 1 (D) 0 (E) does not exist

70. Multiple Choice What is the value of f (1)? C

(A) 5�2 (B) 3�2 (C) 1 (D) 0 (E) does not exist

Explorations
In Exercises 71–74, complete the following tables and state what you
believe limx→0 f (x) to be.

(a)

(b)

71. f �x� � x sin �
1
x

� 72. f �x� � sin �
1
x

�

73. f �x� � �
10 x

x
� 1
� 74. f �x� � x sin �ln �x ��

75. Group Activity To prove that limu→0 (sin u)�u � 1 when u is
measured in radians, the plan is to show that the right- and left-
hand limits are both 1.

(a) To show that the right-hand limit is 1, explain why we can
restrict our attention to 0 	 u 	 p�2.

(b) Use the figure to show that

area of �OAP � �
1
2

� sin u,

area of sector OAP � �
u

2
� ,

area of �OAT � �
1
2

� tan u.

(c) Use part (b) and the figure to show that for 0 	 u 	 p�2,

�
1
2

� sin u 	 �
1
2

� u 	 �
1
2

� tan u.

x 0.1 0.01 0.001 0.0001 …
f �x� � ? ? ? ?

x �0.1 �0.01 �0.001 �0.0001 …
f �x� � ? ? ? ?

x

y

O

1

1

Q

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

tan �

A(1, 0)

P

sin �

cos ��

1

T

(b) (�2p, 0) � (0, 2p)
(c) c � 2p (d) c � �2p

(b) 
�p, �
p

2
�� � 
�

p

2
�, p�

(c) c � p (d) c � �p

(b) (0, 1) � (1, 2)
(c) c � 2 (d) c � 0

(b) (��, �1) � (�1, 1) � (1, �) 
(c) None (d) None

66. True.

lim
x→0
�x �

x
sin x
�� � lim

x→0
1 � �
sin

x
x

�� � 1 � lim
x→0

�
sin

x
x

� � 2 

Because the right-hand limit at
zero depends only on the values of the function for positive x-values near zero.

Use: area of triangle �


�
1

2
��(base)(height)

area of circular sector �

�
(angle)(

2

radius)2

�

This is how the areas of the three regions compare.
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(d) Show that for  0 	 u 	 p�2 the inequality of part (c) can be
written in the form

1 	 �
sin

u

u
� 	 �

co
1
s u
� .

(e) Show that for  0 	 u 	 p�2 the inequality of part (d) can be
written in the form

cos u 	 �
sin

u

u
� 	 1.

(f) Use the Sandwich Theorem to show that 

lim
u→0�

�
sin

u

u
� � 1.

(g) Show that  �sin u��u is an even function.

(h) Use part (g) to show that 

lim
u→0�

�
sin

u

u
� � 1.

(i) Finally, show that 

lim
u→0

�
sin

u

u
� � 1.
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Extending the Ideas
76. Controlling Outputs Let f �x� � �3	x	�	 2	.

(a) Show that limx→2 f �x� � 2 � f �2�.

(b) Use a graph to estimate values for a and b so that 
1.8 	 f (x) 	 2.2 provided a 	 x 	 b.

(c) Use a graph to estimate values for a and b so that 
1.99 	 f (x) 	 2.01 provided a 	 x 	 b.

77. Controlling Outputs Let f (x) � sin x.

(a) Find f �p�6�. f
�
p

6
�� � �

1
2

�

(b) Use a graph to estimate an interval (a, b) about x � p�6 so
that 0.3 	 f (x) 	 0.7 provided a 	 x 	 b. One possible answer:

(c) Use a graph to estimate an interval (a, b) about x � p�6 so
that 0.49 	 f (x) 	 0.51 provided a 	 x 	 b. One possible answer:

78. Limits and Geometry Let P(a, a2) be a point on the parabola 
y � x2, a 
 0. Let O be the origin and (0, b) the y-intercept of the
perpendicular bisector of line segment OP. Find limP→O b. �

1
2

�

Multiply by 2 and divide
by sin u.

Take reciprocals, remembering
that all of the values involved
are  positive.

75. (f) The limits for cos u and 1 are both equal to 1. Since �
sin
u

u
� is between

them, it must also have a limit of 1.

(g) �
sin

�

(�

u

u)
� � �

�s
�

in
u

(u)
� � �

sin
u

(u)
�

(h) If the function is symmetric about the y-axis, and the right-hand limit at
zero is 1, then the left-hand limit at zero must also be 1.

One possible answer:
a � 1.75, b � 2.28

One possible answer:
a � 1.99, b � 2.01

a � 0.305, b � 0.775

a � 0.513, b � 0.535

The limit can be found by
substitution.

The two one-sided limits both
exist and are equal to 1.
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Limits Involving Infinity

Finite Limits as x:��

The symbol for infinity (�) does not represent a real number. We use � to describe the be-
havior of a function when the values in its domain or range outgrow all finite bounds. For
example, when we say “the limit of f as x approaches infinity” we mean the limit of f as x
moves increasingly far to the right on the number line. When we say “the limit of f as x ap-
proaches negative infinity (��)” we mean the limit of f as x moves increasingly far to the
left. (The limit in each case may or may not exist.)

Looking at f �x� � 1�x (Figure 2.9), we observe

(a) as x→�, �1�x�→0 and we write

lim
x→�

�1�x� � 0,

(b) as x→��, �1�x�→0 and we write 

lim
x→��

�1�x� � 0.

We say that the line y � 0 is a horizontal asymptote of the graph of f.

70 Chapter 2 Limits and Continuity

[–10, 10] by [–1.5, 1.5]

(a)

X

Y1 = X/√ (X2 + 1)

0
1
2
3
4
5
6

0
.7071
.8944
.9487
.9701
.9806
.9864

Y1

X

Y1 = X/√ (X2 + 1)

-6
-5
-4
-3
-2
-1
0

-.9864
-.9806
-.9701
-.9487
-.8944
-.7071
 0

Y1

(b)

Figure 2.10 (a) The graph of f �x� �
x��x2� �� 1� has two horizontal asymp-
totes, y � �1 and y � 1. (b) Selected 
values of f. (Example 1)

2.2

What you’ll learn about

• Finite Limits as x→��

• Sandwich Theorem Revisited

• Infinite Limits as x→a

• End Behavior Models

• “Seeing” Limits as x→��

. . . and why

Limits can be used to describe
the behavior of functions for
numbers large in absolute value.

Figure 2.9 The graph of f (x) � 1�x

[–6, 6] by [–4, 4]

The graph of  f �x� � 2 � (1�x) has the single horizontal asymptote y � 2 because

lim
x→� (2 � �

1
x

� ) � 2 and lim
x→�� (2 � �

1
x

� ) � 2.

A function can have more than one horizontal asymptote, as Example 1 demonstrates.

EXAMPLE 1 Looking for Horizontal Asymptotes

Use graphs and tables to find limx→� f (x), limx→�� f (x), and identify all horizontal

asymptotes of f (x) � x��x�2��� 1�.

SOLUTION

Solve Graphically Figure 2.10a shows the graph for �10 � x � 10. The graph
climbs rapidly toward the line y � 1 as x moves away from the origin to the right. 
On our calculator screen, the graph soon becomes indistinguishable from the line. 
Thus limx→� f (x) � 1. Similarly, as x moves away from the origin to the left, the 

graph drops rapidly toward the line y � �1 and soon appears to overlap the line. Thus
limx→�� f (x) � �1. The horizontal asymptotes are y � 1 and y � �1.

continued

DEFINITION Horizontal Asymptote

The line y � b is a horizontal asymptote of the graph of a function y � f(x) if either

lim
x→�

f �x� � b or lim
x→��

f �x� � b.
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Confirm Numerically The table in Figure 2.10b confirms the rapid approach of f (x)
toward 1 as x→�. Since f is an odd function of x, we can expect its values to approach
�1 in a similar way as x→��. Now try Exercise 5.

Sandwich Theorem Revisited
The Sandwich Theorem also holds for limits as x→��.

EXAMPLE 2 Finding a Limit as x Approaches �

Find  lim
x→�

f �x�  for f �x� � �
sin

x
x

� .

SOLUTION

Solve Graphically and Numerically The graph and table of values in Figure 2.11
suggest that y � 0 is the horizontal asymptote of f.

Confirm Analytically We know that �1 � sin x � 1. So, for x 
 0 we have

� �
1
x

� � �
sin

x
x

� � �
1
x

� .

Therefore, by the Sandwich Theorem,

0 � lim
x→� (� �

1
x

� ) � lim
x→�

�
sin

x
x

� � lim
x→�

�
1
x

� � 0.

Since �sin x��x is an even function of x, we can also conclude that

lim
x→�

�
sin

x
x

� � 0. Now try Exercise 9.

Limits at infinity have properties similar to those of finite limits.
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Figure 2.11 (a) The graph of f �x� �
�sin x��x oscillates about the x-axis. The
amplitude of the oscillations decreases
toward zero as x→��. (b) A table of val-
ues for f that suggests f �x�→0 as x→�.
(Example 2)

[–4�, 4�] by [–0.5, 1.5]

(a)

X

Y1 = sin(X)/X

100
200
300
400
500
600
700

–.0051
–.0044
–.0033
–.0021
–9E–4
7.4E–5
7.8E–4

Y1

(b)

THEOREM 5 Properties of Limits as x→��

If L, M, and k are real numbers and

lim
x→��

f �x� � L and lim
x→��

g�x� � M, then

1. Sum Rule: lim
x→��

� f �x� � g�x�� � L � M

2. Difference Rule: lim
x→��

� f �x� � g�x�� � L � M

3. Product Rule: lim
x→��

� f �x� • g�x�� � L • M

4. Constant Multiple Rule: lim
x→��

�k • f �x�� � k • L

5. Quotient Rule: lim
x→��

�
g
f �

�
x
x
�
�

� � �
M
L

� , M � 0

6. Power Rule: If r and s are integers, s � 0, then

lim
x→��

� f �x��r�s � Lr�s

provided that is a real number.Lr>s
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Infinite Limits as x→a
If the values of a function f (x) outgrow all positive bounds as x approaches a finite number
a, we say that limx→a f �x� � �. If the values of f become large and negative, exceeding all
negative bounds as x→a, we say that limx→a f �x� � ��.

Looking at f (x) � 1�x (Figure 2.9, page 70), we observe that

lim
x→0�

1�x � � and lim
x→0�

1�x � ��.

We say that the line x � 0 is a vertical asymptote of the graph of f.

72 Chapter 2 Limits and Continuity

We can use Theorem 5 to find limits at infinity of functions with complicated expres-
sions, as illustrated in Example 3.

EXAMPLE 3 Using Theorem 5

Find  lim
x→�

�
5x �

x
sin x
� .

SOLUTION

Notice that

�
5x �

x
sin x
� � �

5
x
x
� � �

sin
x

x
� � 5 � �

sin
x

x
� .

So,

lim
x→�

�
5x �

x
sin x
� � lim

x→�
5 � lim

x→�
�
sin

x
x

� Sum Rule

� 5 � 0 � 5. Known Values

Now try Exercise 25.

Exploring Theorem 5

We must be careful how we apply Theorem 5.

1. (Example 3 again) Let f (x) � 5x � sin x and g(x) � x. Do the limits as x→�
of f and g exist? Can we apply the Quotient Rule to limx→� f �x��g�x�? Explain.
Does the limit of the quotient exist?

2. Let f (x) � sin2 x and g(x) � cos2 x. Describe the behavior of f and g as x→�.
Can we apply the Sum Rule to limx→� � f �x� � g�x��? Explain. Does the limit of
the sum exist?

3. Let f (x) � ln (2x) and g(x) � ln (x � 1). Find the limits as x→� of f and g. Can
we apply the Difference Rule to limx→� � f �x� � g�x��? Explain. Does the limit
of the difference exist?

4. Based on parts 1–3, what advice might you give about applying Theorem 5?

EXPLORATION 1

DEFINITION Vertical Asymptote

The line x � a is a vertical asymptote of the graph of a function y � f (x) if either

lim
x→a�

f �x� � �� or lim
x→a�

f �x� � ��
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Section 2.2 Limits Involving Infinity 73

[–2p, 2p] by [–5, 5]

Figure 2.12 The graph of f (x) � tan x
has a vertical asymptote at 

. . . ,��
3
2
p
�, ��

p

2
�, �
p

2
�, �

3
2
p
�, . . . . (Example 5)

EXAMPLE 4 Finding Vertical Asymptotes

Find the vertical asymptotes of f �x� � �
x
1
2� . Describe the behavior to the left and right of

each vertical asymptote.

SOLUTION

The values of the function approach � on either side of x � 0.

lim
x→0�

�
x
1
2� � � and lim

x→0�
�
x
1
2� � �.

The line x � 0 is the only vertical asymptote. Now try Exercise 27.

We can also say that limx→0 �1�x2� � �. We can make no such statement about 1�x .

EXAMPLE 5 Finding Vertical Asymptotes

The graph of  f �x� � tan x � �sin x���cos x� has infinitely many vertical asymptotes,
one at each point where the cosine is zero. If a is an odd multiple of p�2, then

lim
x→a�

tan x � �� and lim
x→a�

tan x � �,

as suggested by Figure 2.12. Now try Exercise 31.

You might think that the graph of a quotient always has a vertical asymptote where the
denominator is zero, but that need not be the case. For example, we observed in Section
2.1 that limx→0 �sin x��x � 1.

End Behavior Models
For numerically large values of x, we can sometimes model the behavior of a complicated
function by a simpler one that acts virtually in the same way.

EXAMPLE 6 Modeling Functions For ⏐x⏐ Large

Let f (x) � 3x4 � 2x3 � 3x2 � 5x � 6 and g(x) � 3x4. Show that while f and g are quite
different for numerically small values of x, they are virtually identical for �x � large.

SOLUTION

Solve Graphically The graphs of f and g (Figure 2.13a), quite different near the ori-
gin, are virtually identical on a larger scale (Figure 2.13b).

Confirm Analytically We can test the claim that g models f for numerically large
values of x by examining the ratio of the two functions as x→��. We find that

lim
x→��

�
g
f �

�
x
x
�
�

� � lim
x→��

3x4

�
� 2x3

�
�

3x4�
3x2 �

�
5x �
�

6
�

� lim
x→�� (1� �

3
2
x
� � �

x
1
2� � �

3
5
x3� � �

x
2
4�)

� 1,

convincing evidence that f and g behave alike for �x � large. Now try Exercise 39.

[–2, 2] by [–5, 20]

(a)

y = 3x4 – 2x3 + 3x2 – 5x + 6

[–20, 20] by [–100000, 500000]

(b)

Figure 2.13 The graphs of f and g,
(a) distinct for �x � small, are (b) nearly
identical for �x � large. (Example 6)
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If one function provides both a left and right end behavior model, it is simply called an
end behavior model. Thus, g(x) � 3x4 is an end behavior model for f (x) � 3x4 � 2x3 �
3x2 � 5x � 6 (Example 6).

In general, g(x) � anxn is an end behavior model for the polynomial function f (x) �
anxn � an�1xn � 1 � … � a0, an � 0. Overall, the end behavior of all polynomials behave
like the end behavior of monomials. This is the key to the end behavior of rational func-
tions, as illustrated in Example 7.

EXAMPLE 7 Finding End Behavior Models

Find an end behavior model for

(a) f �x� ��
2x5

3x
�

2 �

x4

5
�

x
x
�

2 �

7
1

� (b) g�x� ��
2
5
x
x

3

3
�

�

x
x

2

2
�

�

x
x

�

�

1
5

�

SOLUTION

(a) Notice that 2x5 is an end behavior model for the numerator of f, and 3x2 is one
for the denominator. This makes

�
2
3
x
x

5

2� � �
2
3

� x3

an end behavior model for f.

(b) Similarly, 2x3 is an end behavior model for the numerator of g, and 5x3 is one for
the denominator of g. This makes

�
2
5
x
x

3

3� � �
2
5

�

an end behavior model for g. Now try Exercise 43.

Notice in Example 7b that the end behavior model for g, y � 2 �5, is also a horizontal
asymptote of the graph of g, while in 7a, the graph of f does not have a horizontal asymp-
tote. We can use the end behavior model of a rational function to identify any horizontal
asymptote.

We can see from Example 7 that a rational function always has a simple power function
as an end behavior model.

A function’s right and left end behavior models need not be the same function.

EXAMPLE 8 Finding End Behavior Models

Let f (x) � x � e�x. Show that g(x) � x is a right end behavior model for f while 
h(x) � e�x is a left end behavior model for f.

SOLUTION

On the right,

lim
x→�

�
g
f �

�
x
x
�
�

� � lim
x→�

�
x �

x
e�x

� � lim
x→� (1 � �

e�

x

x

�) � 1 because lim
x→�

�
e�

x

x

� � 0.

DEFINITION End Behavior Model

The function g is

(a) a right end behavior model for f if and only if lim
x→�

�
g
f �

�
x
x
�
�

� � 1.

(b) a left end behavior model for f if and only if  lim
x→��

�
g
f �

�
x
x
�
�

� � 1.

continued
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[–9, 9] by [–2, 10]

Figure 2.14 The graph of f (x) � x � e�x

looks like the graph of g(x) � x to the right
of the y-axis, and like the graph of h(x) �
e�x to the left of the y-axis. (Example 8)

Figure 2.15 The graphs of (a) f �x� � sin �1�x� and (b) g�x� � f �1�x� � sin x. (Example 9)

[–10, 10] by [–1, 1]

(a)

[–2p, 2p] by [–2, 2]

(b)

On the left,

lim
x→��

�
h
f �
�
x
x
�
�

� � lim
x→��

�
x �

e�

e
x

�x

� � lim
x→�� (�

e�

x
x� � 1) � 1 because  lim

x→��
�
e�

x
x� � 0.

The graph of f in Figure 2.14 supports these end behavior conclusions.

Now try Exercise 45.

“Seeing” Limits as x→��

We can investigate the graph of y � f (x) as x→�� by investigating the graph of 
y � f �1�x� as x→0.

EXAMPLE 9 Using Substitution

Find lim
x→�

sin �1�x�.

SOLUTION

Figure 2.15a suggests that the limit is 0. Indeed, replacing limx→� sin �1�x� by the
equivalent limx→0� sin x � 0 (Figure 2.15b), we find

lim
x→�

sin 1�x � lim
x→0�

sin x � 0. .

Now try Exercise 49.

Quick Review 2.2 (For help, go to Section 1.2 and 1.5.)

In Exercises 1–4, find f�1 and graph f, f�1, and y � x in the same
square viewing window.

1. f �x� � 2x � 3 f �1(x) � �
x �

2
3

� 2. f �x� � ex f �1(x) � ln (x)

3. f (x) � tan�1 x 4. f(x) � cot�1 x

In Exercises 5 and 6, find the quotient q(x) and remainder r(x) when
f (x) is divided by g(x).

5. f (x) � 2x3 � 3x2 � x � 1, g(x) � 3x3 � 4x � 5

6. f (x) � 2x5 � x3 � x � 1, g(x) � x3 � x2 � 1

In Exercises 7–10, write a formula for (a) f(�x) and (b) f(1�x). Sim-
plify where possible.

7. f (x) � cos x (a) f(�x) � cos x     (b) f
�
1
x

�� � cos 
�
1
x

��
8. f (x) � e�x (a) f(�x) � ex    (b) f
�

1
x

�� � e�1/x

9. f �x� � �
ln

x
x

� (a) f(�x) � � �
ln (

x
�x)
� (b) f
�

1
x

�� � �x ln x

10. f �x� � 
x � �
1
x

�� sin x

f �1(x) � tan (x), ��
p

2
� 	 x 	 �

p

2
� f �1(x) � cot (x), 0 	 x 	 p

5. q(x) � �
2
3

�

r(x) � �3x2 � 
�
5
3

��x � �
7
3

�

6. q(x) � 2x2 � 2x � 1

r(x) � �x2 � x � 2

(a) f(�x) � 
x � �
1
x

�� sin x (b) f
�
1
x

�� � 
�
1
x

� � x� sin 
�
1
x

��
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In Exercises 1–8, use graphs and tables to find (a) limx→� f �x� and
(b) limx→�� f �x� (c) Identify all horizontal asymptotes.

1. f �x� � cos ( �
1
x

� ) 2. f �x� � �
sin

x
2x
�

3. f �x� � �
e�

x

x

� 4. f �x� � �
3x3

x
�

�

x
3
� 1

�

5. f �x� � �
�

3
x
x
�

�

�

1
2

� 6. f �x� � �
�

2
x
x
�

�

�

1
3

�

7. f �x� � �
�

x
x �
� 8. f �x� �

In Exercises 9–12, find the limit and confirm your answer using the
Sandwich Theorem.

9. lim
x→�

�
1�

x
c
2
os x
� 0 10. lim

x→��
�
1 �

x
c
2
os x
� 0

11. lim
x→��

�
sin

x
x

� 0 12. lim
x→�

�
sin

x
(x2)
� 0

In Exercises 13–20, use graphs and tables to find the limits.

13. lim
x→2�

�
x �

1
2

� � 14. lim
x→2�

�
x �

x
2

� ��

15. lim
x→�3�

�
x �

1
3

� �� 16. lim
x→�3�

�
x �

x
3

� ��

17. lim
x→0�

�
in

x
t x
� 0 18. lim

x→0�
�
in

x
t x
� �

19. lim
x→0�

csc x � 20. lim
x→�p�2��

sec x ��

In Exercises 21–26, find limx→� y and limx→�� y.

21. y � (2 � �
x �

x
1

�)(�5 �

x2

x2�) 22. y � ( �
2
x

� � 1)(�5x2

x
�
2

1
�)

23. y � �
1
co

�

s �
�
1
1
�
�
x
x
�
�

� Both are 1 24. y � �
2x �

x
sin x
� Both are 2

25. y � �
2x

si
2
n
�

x
x

� Both are 0 26. y ��
x sin x

2
�

x2
2 sin x
�

In Exercises 27–34, (a) find the vertical asymptotes of the graph of
f (x). (b) Describe the behavior of f (x) to the left and right of each
vertical asymptote.

27. f �x� � �
x2

1
� 4
� 28. f �x� � �

2
x
x

2 �

�

1
4

� (a) x � �2

29. f �x� � �
x
x

2 �

�

2
1
x

� (a) x � �1 30. f �x� � �
2x2

1
�

�

5x
x
� 3

�

31. f �x� � cot x 32. f �x� � sec x

33. f (x) � �
t
s
a
in
n

x
x

� 34. f (x) � �
c
c
o
o
s
t x

x
�

In Exercises 35–38, match the function with the graph of its end be-
havior model.

35. y ��
2x3 �

x �

3x
3

2 � 1
� (a) 36. y ��

x5

2
�

x2
x
�

4 �

x �

x �

3
1

� (c)

37. y ��
2x4 �

2
x3

�

�

x
x2 � 1

� (d) 38. y ��
x4 � 3

1
x
�

3 �

x2
x2 � 1

� (b)

�x �
�
�x � � 1

In Exercises 39–44, (a) find a power function end behavior model for
f. (b) Identify any horizontal asymptotes.

39. f (x) � 3x2 � 2x � 1 40. f (x) � �4x3 � x2 � 2x � 1

41. f �x� � �
2x2

x
�

�

3x
2

� 5
� 42. f �x� � �

3x2

x
�
2 �

x
4
� 5

�

43. f �x� � �
4x3

x
�

�

2x
2

� 1
� 44. f �x� �

In Exercises 45–48, find (a) a simple basic function as a right end be-
havior model and (b) a simple basic function as a left end behavior
model for the function.

45. y � ex � 2x (a) ex (b) �2x 46. y � x2 � e�x (a) x2 (b) e�x

47. y � x � ln �x � (a) x (b) x 48. y � x2 � sin x (a) x2 (b) x2

In Exercises 49–52, use the graph of y � f �1�x� to find limx→� f �x�
and  limx→�� f �x�.
49. f (x) � xex At �: � At ��: 0 50. f (x) � x2e�x At �: 0 At ��: �

51. f �x� � At �: 0   At ��: 0 52. f �x� � x sin �
1
x

�

In Exercises 53 and 54, find the limit of f �x� as (a) x→��,
(b) x→�, (c) x→0�, and (d) x→0�.

53.
1�x, x 	 0

f �x� � {�1, x � 0 (a) 0 (b) �1 (c) �� (d) �1

�
x
x

�

�

2
1

� , x � 0
54. f �x� � {1�x2, x 
 0 (a) 1 (b) 0 (c) 2 (d) �

Group Activity In Exercises 55 and 56, sketch a graph of a func-
tion y � f (x) that satisfies the stated conditions. Include any asymp-
totes.

55. lim
x→1

f �x� � 2, lim
x→5�

f �x� � �, lim
x→5�

f �x� � �,

lim
x→�

f �x� ��1, lim
x→�2�

f �x� � ��,

lim
x→�2�

f �x� � �, lim
x→��

f �x� � 0

56. lim
x→2

f �x� � �1, lim
x→4�

f �x� � ��, lim
x→4�

f �x� � �,

lim
x→�

f �x� � �, lim
x→��

f �x� � 2

ln �x �
�

x

�x4 � 2x2 � x � 3
���

x2 � 4

Section 2.2 Exercises

(a) (b)

(c) (d)

76 Chapter 2 Limits and Continuity

(a) 1 (b) 1
(c) y � 1

(a) 0 (b) 0
(c) y � 0

(a) 0 (b) ��

(c) y � 0
(a) � (b) �

(c) None

(a) 3 (b) �3
(c) y � 3, y ��3

(a) 2 (b) �2
(c) y � 2, y � �2

(a) 1 (b) �1
(c) y � l, y � �l

(a) 1 (b) 1 (c) y � 1

Both are 1

Both are 5

Both are 0

(a) x � �2, x � 2

(a) x � ��
1
2

�, x � 3

(a) x � �
p

2
� � np,

n any integer

(a) x � kp, k any
integer

(a) 3x2 (b) None (a) �4x3 (b) None

(a) �
2
1
x
� (b) y � 0 (a) 3 (b) y � 3

(a) 4x2 (b) None (a) �x2 (b) None

At �: 1 At ��: 1
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57. Group Activity End Behavior Models Suppose that g1(x)
is a right end behavior model for f1(x) and that g2(x) is a right
end behavior model for f2(x). Explain why this makes g1�x��g2�x�
a right end behavior model for f1�x��f2�x�.

58. Writing to Learn Let L be a real number, limx→c f �x� � L ,
and limx→c g�x� � � or ��. Can limx→c � f �x� � g�x�� be 
determined? Explain.

Standardized Test Questions
You may use a graphing calculator to solve the following 
problems.

59. True or False It is possible for a function to have more than
one horizontal asymptote. Justify your answer.

60. True or False If f (x) has a vertical asymptote at x � c, then either
limx→c� f (x) � limx→c� f (x) � � or limx→c� f (x) �

limx→c� f (x) � ��. Justify your answer.

61. Multiple Choice lim
x→2�

�
x �

x
2

� � A

(A) �� (B) � (C) 1 (D) �1�2 (E) �1

62. Multiple Choice lim
x→0

�
cos

x
(2x)
� � E

(A) 1�2 (B) 1 (C) 2 (D) cos 2 (E) does not exist

63. Multiple Choice lim
x→0

�
sin

x
(3x)
� � C

(A) 1�3 (B) 1 (C) 3 (D) sin 3 (E) does not exist

64. Multiple Choice Which of the following is an end behavior for

f (x) ��
2x3 �

x
x
3

2

�

�

1
x � 1

�?

(A) x3 (B) 2x3 (C) 1�x3 (D) 2 (E) 1�2

Exploration
65. Exploring Properties of Limits Find the limits of f, g, and fg

as x→c.

(a) f �x� � �
1
x

� , g�x� � x, c � 0

(b) f �x� � � �
x
2
3� , g�x� � 4x3, c � 0

(c) f �x� � �
x �

3
2

� , g�x� � (x � 2)3, c � 2

(d) f �x� � �
(3 �

5
x)4� , g�x� � (x � 3)2, c � 3

(e) Writing to Learn Suppose that limx→c f �x� � 0 and
limx→c g�x� � �. Based on your observations in parts (a)–(d),
what can you say about limx→c � f �x� • g�x��?

Extending the Ideas
66. The Greatest Integer Function

(a) Show that

�
x �

x
1

� � �
in

x
t x
� � 1 �x 	 0� and �

x �

x
1

� 	 �
in

x
t x
� 
 1 �x � 0�.

(b) Determine  lim
x→�

�
in

x
t x
� . 1

(c) Determine  lim
x→��

�
in

x
t x
� . 1

67. Sandwich Theorem Use the Sandwich Theorem to confirm
the limit as x→� found in Exercise 3.

68. Writing to Learn Explain why there is no value L for which
limx→� sin x � L.

In Exercises 69–71, find the limit. Give a convincing argument that
the value is correct.

69. lim
x→�

�
l
l
n
n

x
x

2

� Limit � 2, because �
l
l
n
n

x
x

2
� � �

2
ln
ln

x
x

� � 2.

70. lim
x→�

�
l
l
o
n
g
x
x

� Limit � ln (10), since �
l
l
o
n
g
x
x

� � �
ln x

ln
�l

x
n 10
� � ln 10.

71. lim
x→�

�
ln �

l
x
n

�

x
1�

�

You should solve the following problems without using 
a graphing calculator.

1. Multiple Choice Find lim
x→3

�
x2 �

x �

x �

3
6

�, if it exists. D

(A) �1 (B) 1 (C) 2 (D) 5 (E) does not exist

2. Multiple Choice Find lim
x→2�

f (x), if it exists, where A

3x � 1, x � 2
f �x� � {�

x �

5
1

�, x 
 2

(A) 5�3 (B) 13�3 (C) 7 (D) � (E) does not exist

3. Multiple Choice Which of the following lines is a horizontal
asymptote for 

f(x) ��
3x

2

3

x
�
3 �

x2

4
�

x �

x �

5
7

�?

(A) y � �
3
2

�x (B) y � 0 (C) y � 2�3 (D) y � 7�5 (E) y � 3�2

4. Free Response Let f (x) � �
co

x
s x
�.

(a) Find the domain and range of f.

(b) Is f even, odd, or neither? Justify your answer.

(c) Find limx→� f (x). 0

(d) Use the Sandwich Theorem to justify your answer to part (c).

Quick Quiz for AP* Preparation: Sections 2.1 and 2.2

False. Consider  f (x) � 1�x.

D

f → �� as x →0−, f → � as x →0+, g → 0, fg →1

f → � as x →0−, f → − � as x → 0+, g → 0, fg → −8

f → − � as x →2−, f → � as x → 2+, g → 0, fg → 0

x→ �, g → 0, fg → �

Nothing—you need more information to decide.

This follows from x � 1 � int x � x which is true for all
x. Dividing by x gives the result.

This is because as x approaches infinity, sin x contin-
ues to oscillate between 1 and �1 and doesn’t approach any single real number.

Limit � 1. Since ln (x � 1) � ln x �1 � �
1
x

�� � ln x � ln �1 � �
1
x

��, �
ln (

l
x
n

�

x
1)

� �

� 1 � �
ln (1

ln
�

x
1�x)

�. But as x → �, 1 + �
1
x

� approaches 1, so 

ln �1 + �
1
x

�� approaches ln (1) � 0. Also, as x → �, ln x approaches infinity. This 

means the second term above approaches 0 and the limit is 1.

ln x � ln (1 � 1�x)
���

ln x

57. �
g

f1

1

(

(

x

x

)

)

/

/

f

g
2

2

(

(

x

x

)

)
� � �

f

f
1

2

(

(

x

x

)

)

/

/

g

g
1

2

(

(

x

x

)

)
� As x goes to infinity, �

g

f1

1
� and �

g

f2

2
� both approach 1. Therefore, using the above equation, �

g
f1
1

�
�g
f2

2
� must also approach 1.

59. True. For example, f (x) � �
�x2

x

� 1�
� has y � �1 as horizontal asymptotes.

58. Yes. The limit of ( f � g) will be the same as the limit of g. This is because adding numbers that are very close to a given real number L will not have a signifi-
cant effect on the value of ( f � g) since the values of g are becoming arbitrarily large.

E

Domain: (��, 0) � (0, �);
Range: (��, �).

5128_CH02_58-97.qxd  01/16/06  12:05 PM  Page 77



78 Chapter 2 Limits and Continuity

Figure 2.17 The laser was developed as
a result of an understanding of the nature
of the atom.

Figure 2.18 The function is continu-
ous on [0, 4] except at x � 1 and x � 2. 
(Example 1)

y

x
0

1

1 2 3 4

y = f(x)
2

Continuity

Continuity at a Point
When we plot function values generated in the laboratory or collected in the field, we
often connect the plotted points with an unbroken curve to show what the function’s val-
ues are likely to have been at the times we did not measure (Figure 2.16). In doing so, we
are assuming that we are working with a continuous function, a function whose outputs
vary continuously with the inputs and do not jump from one value to another without tak-
ing on the values in between. Any function y � f (x) whose graph can be sketched in one
continuous motion without lifting the pencil is an example of a continuous function.

Continuous functions are the functions we use to find a planet’s closest point of ap-
proach to the sun or the peak concentration of antibodies in blood plasma. They are also the
functions we use to describe how a body moves through space or how the speed of a chem-
ical reaction changes with time. In fact, so many physical processes proceed continuously
that throughout the eighteenth and nineteenth centuries it rarely occurred to anyone to look
for any other kind of behavior. It came as a surprise when the physicists of the 1920s dis-
covered that light comes in particles and that heated atoms emit light at discrete frequencies
(Figure 2.17). As a result of these and other discoveries, and because of the heavy use of
discontinuous functions in computer science, statistics, and mathematical modeling, the
issue of continuity has become one of practical as well as theoretical importance.

To understand continuity, we need to consider a function like the one in Figure 2.18,
whose limits we investigated in Example 8, Section 2.1.

2.3

What you’ll learn about

• Continuity at a Point

• Continuous Functions

• Algebraic Combinations

• Composites

• Intermediate Value Theorem 
for Continuous Functions

. . . and why

Continuous functions are used 
to describe how a body moves
through space and how the speed
of a chemical reaction changes
with time.
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Figure 2.16 How the heartbeat returns
to a normal rate after running.

EXAMPLE 1 Investigating Continuity

Find the points at which the function f in Figure 2.18 is continuous, and the points at
which f is discontinuous.

SOLUTION

The function f is continuous at every point in its domain [0, 4] except at x � 1 and x � 2.
At these points there are breaks in the graph. Note the relationship between the limit of f
and the value of f at each point of the function’s domain.

Points at which f is continuous:

At x � 0, lim
x→0�

f �x� � f �0�.

At x � 4, lim
x→4�

f �x� � f �4�.

At 0 	 c 	 4, c � 1, 2, lim
x→c

f �x� � f �c�.
continued
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Section 2.3 Continuity 79

DEFINITION Continuity at a Point

Interior Point: A function y � f (x) is continuous at an interior point c of its domain if

lim
x→c

f �x� � f �c�.

Endpoint: A function y � f (x) is continuous at a left endpoint a or is continuous
at a right endpoint b of its domain if

lim
x→a�

f �x� � f �a� or lim
x→b�

f �x� � f �b�, respectively.

Points at which f is discontinuous:

At x � 1, lim
x→1

f �x� does not exist.

At x � 2, lim
x→2

f �x� � 1, but  1 � f �2�.

At c 	 0, c 
 4, these points are not in the domain of f.

Now try Exercise 5.

To define continuity at a point in a function’s domain, we need to define continuity at
an interior point (which involves a two-sided limit) and continuity at an endpoint (which
involves a one-sided limit). (Figure 2.19)

If a function f is not continuous at a point c, we say that f is discontinuous at c and c is
a point of discontinuity of f. Note that c need not be in the domain of f.

EXAMPLE 2 Finding Points of Continuity and Discontinuity

Find the points of continuity and the points of discontinuity of the greatest integer func-
tion (Figure 2.20).

SOLUTION

For the function to be continuous at x � c, the limit as x→c must exist and must equal
the value of the function at x � c. The greatest integer function is discontinuous at every
integer. For example,

lim
x→3�

int x � 2 and lim
x→3�

int x � 3

so the limit as x→3 does not exist. Notice that int 3 � 3. In general, if n is any integer,

lim
x→n�

int x � n � 1 and lim
x→n�

int x � n,

so the limit as x→n does not exist.

The greatest integer function is continuous at every other real number. For example,

lim
x→1.5

int x � 1 � int 1.5.

In general, if n � 1 	 c 	 n, n an integer, then

lim
x→c

int x � n � 1 � int c.

Now try Exercise 7.

Continuity
from the right

Two-sided
continuity Continuity

from the left

y = f(x)

a c b
x

Figure 2.19 Continuity at points a, b,
and c for a function y � f (x) that is con-
tinuous on the interval [a, b].

x

y

3

3

21

2

1

–2

–1

int xy = 

4

4

Figure 2.20 The function int x is 
continuous at every noninteger point. 
(Example 2)
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80 Chapter 2 Limits and Continuity

Figure 2.21 is a catalog of discontinuity types. The function in (a) is continuous at x � 0.
The function in (b) would be continuous if it had f (0) � 1. The function in (c) would be
continuous if f (0) were 1 instead of 2. The discontinuities in (b) and (c) are removable.
Each function has a limit as x→0, and we can remove the discontinuity by setting f (0)
equal to this limit.

The discontinuities in (d)–(f) of Figure 2.21 are more serious: limx→0 f �x� does not
exist and there is no way to improve the situation by changing f at 0. The step function in
(d) has a jump discontinuity: the one-sided limits exist but have different values. The
function f �x� � 1�x2 in (e) has an infinite discontinuity. The function in ( f ) has an
oscillating discontinuity: it oscillates and has no limit as x→0.

(b)

0

1

y

x

y = f(x)

(a)

0

1

y

x

y = f(x)

(c)

0

1

2

y

x

y = f(x)

(d)

0

1

y

x

y = f(x)

(e) (f)

y = sin
1
x0

1

–1

0

y y

x

x

y = f(x) = 1
x2

Figure 2.21 The function in part (a) is continuous at x � 0. The functions in parts (b)–(f) are not.

Shirley Ann Jackson
(1946—)

Distinguished scientist,

Shirley Jackson credits

her interest in science

to her parents and ex-

cellent mathematics

and science teachers in

high school. She stud-

ied physics, and in

1973, became the first African American

woman to earn a Ph.D. at the Massachu-

setts Institute of Technology. Since then,

Dr. Jackson has done research on topics

relating to theoretical material sciences,

has received numerous scholarships and

honors, and has published more than

one hundred scientific articles.
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Continuous Functions
A function is continuous on an interval if and only if it is continuous at every point of the
interval. A continuous function is one that is continuous at every point of its domain. A
continuous function need not be continuous on every interval. For example, y � 1�x is not
continuous on [�1, 1].

EXAMPLE 3 Identifying Continuous Functions

The reciprocal function y � 1�x (Figure 2.22) is a continuous function because it is
continuous at every point of its domain. However, it has a point of discontinuity at 
x � 0 because it is not defined there.

Now try Exercise 31.

Polynomial functions f are continuous at every real number c because limx→c f �x� �
f �c�. Rational functions are continuous at every point of their domains. They have points
of discontinuity at the zeros of their denominators. The absolute value function y � �x � is
continuous at every real number. The exponential functions, logarithmic functions,
trigonometric functions, and radical functions like y � �n x	 (n a positive integer greater
than 1) are continuous at every point of their domains. All of these functions are continu-
ous functions.

Algebraic Combinations
As you may have guessed, algebraic combinations of continuous functions are continuous
wherever they are defined.

Removing a Discontinuity

Let f �x� � �
x3 �

x2
7
�

x
9
� 6

� .

1. Factor the denominator. What is the domain of f ?

2. Investigate the graph of f around x � 3 to see that f has a removable discontinu-
ity at x � 3.

3. How should f be defined at x � 3 to remove the discontinuity? Use zoom-in and
tables as necessary.

4. Show that (x – 3) is a factor of the numerator of f, and remove all common fac-
tors. Now compute the limit as x→3 of the reduced form for f.

5. Show that the extended function

g�x� � {�x3 �

x2
7
�

x
9
� 6

� , x � 3

10�3, x � 3

is continuous at x � 3. The function g is the continuous extension of the original
function f to include x � 3.

Now try Exercise 25.

EXPLORATION 1

O
x

y

y = 
1
x

Figure 2.22 The function y � 1�x is
continuous at every value of x except 
x � 0. It has a point of discontinuity at 
x � 0. (Example 3)
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82 Chapter 2 Limits and Continuity

Composites
All composites of continuous functions are continuous. This means composites like

y � sin �x2� and y � �cos x �

are continuous at every point at which they are defined. The idea is that if f (x) is continu-
ous at x � c and g(x) is continuous at x � f (c), then g � f is continuous at x � c (Figure
2.23). In this case, the limit as x→c is  g� f �c��.

THEOREM 6 Properties of Continuous Functions

If the functions f and g are continuous at x � c, then the following combinations are
continuous at x � c.

1. Sums: f � g

2. Differences: f � g

3. Products: f • g

4. Constant multiples: k • f, for any number k

5. Quotients: f�g, provided g�c� 	 0

THEOREM 7 Composite of Continuous Functions

If f is continuous at c and g is continuous at f (c), then the composite g � f is contin-
uous at c.

EXAMPLE 4 Using Theorem 7

Show that y � ��x
x

2
s
�

in x
2

� � is continuous.

SOLUTION

The graph (Figure 2.24) of y � ��x sin x���x2 � 2�� suggests that the function is continu-
ous at every value of x. By letting

g�x� � �x � and f �x� � �
x
x

2
s
�

in x
2

� ,

we see that y is the composite g � f.

We know that the absolute value function g is continuous. The function f is continuous
by Theorem 6. Their composite is continuous by Theorem 7. Now try Exercise 33.

c f(c)

Continuous
at c

Continuous
at f(c)

Continuous at c

g ˚ f

g( f (c))

Figure 2.23 Composites of continuous functions are continuous.

Figure 2.24 The graph suggests that
y � ��x sin x���x2 � 2�� is continuous. 
(Example 4)

[–3p, 3p] by [–0.1, 0.5]
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Intermediate Value Theorem for Continuous Functions
Functions that are continuous on intervals have properties that make them particularly use-
ful in mathematics and its applications. One of these is the intermediate value property. A
function is said to have the intermediate value property if it never takes on two values
without taking on all the values in between.

THEOREM 8 The Intermediate Value Theorem for Continuous
Functions

A function y � f (x) that is continuous on a closed interval [a, b] takes on every
value between f(a) and f(b). In other words, if y0 is between f (a) and f (b), then y0 �
f (c) for some c in [a, b].

0 a c b
x

y = f(x)

f(b)

f(a)

y0

y

The continuity of f on the interval is essential to Theorem 8. If f is discontinuous at even
one point of the interval, the theorem’s conclusion may fail, as it does for the function
graphed in Figure 2.25.

A Consequence for Graphing: Connectivity Theorem 8 is the reason why the graph
of a function continuous on an interval cannot have any breaks. The graph will be
connected, a single, unbroken curve, like the graph of sin x. It will not have jumps like
those in the graph of the greatest integer function int x, or separate branches like we see in
the graph of 1�x.

Most graphers can plot points (dot mode). Some can turn on pixels between plotted
points to suggest an unbroken curve (connected mode). For functions, the connected for-
mat basically assumes that outputs vary continuously with inputs and do not jump from
one value to another without taking on all values in between.

EXAMPLE 5 Using Theorem 8

Is any real number exactly 1 less than its cube?

SOLUTION

We answer this question by applying the Intermediate Value Theorem in the following
way. Any such number must satisfy the equation x � x3 � 1 or, equivalently,
x3 � x � 1 � 0. Hence, we are looking for a zero value of the continuous function 
f �x� � x3 � x � 1 (Figure 2.26). The function changes sign between 1 and 2, so there
must be a point c between 1 and 2 where f �c� � 0.

Now try Exercise 46.SFigure 2.26 The graph of 
f �x� � x3 � x � 1. (Example 5)

[–3, 3] by [–2, 2]

x

y

0

2

1

1 2 3 4

3

Figure 2.25 The function

2x � 2, 1 � x 	 2
f �x� � {3, 2 � x � 4

does not take on all values between 
f (1) � 0 and f (4) � 3; it misses all the
values between 2 and 3.

Grapher Failure

In connected mode, a grapher may con-

ceal a function’s discontinuities by por-

traying the graph as a connected curve

when it is not. To see what we mean,

graph y � int (x) in a [�10, 10] by 

[�10, 10] window in both connected and

dot modes. A knowledge of where to 

expect discontinuities will help you rec-

ognize this form of grapher failure.
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Quick Review 2.3 (For help, go to Sections 1.2 and 2.1.)

1. Find  lim
x→�1

�
3x2

x
�
3 �

2x
4
� 1

� . 2

2. Let f �x� � int x.  Find each limit. 

(a) lim
x→�1�

f �x� (b) lim
x→�1�

f �x� (c) lim
x→�1

f �x� (d) f ��1�

3. Let f �x� � {x2 � 4x � 5, x 	 2
4 � x , x � 2.

Find each limit. (a) 1 (b) 2 (c) No limit (d) 2

(a) lim
x→2�

f �x� (b) lim
x→2�

f �x� (c) lim
x→2

f �x� (d) f �2�

In Exercises 4–6, find the remaining functions in the list of functions:
f, g, f � g, g � f.

4. f �x� � �
2
x
x
�

�

5
1

� , g�x� � �
1
x

� � 1

5. f �x� � x2, �g � f ��x� � sin x 2, domain of g � �0, ��

6. g�x� � �x	�	 1	, �g � f ��x� � 1�x, x 
 0

7. Use factoring to solve  2x2 � 9x � 5 � 0. x � �
1
2

�, �5

8. Use graphing to solve  x3 � 2x � 1 � 0. x � 0.453

In Exercises 9 and 10, let

5 � x, x � 3
f �x� � {�x2 � 6x � 8, x 
 3.

9. Solve the equation  f �x� � 4. x � 1

10. Find a value of c for which the equation f �x� � c has no
solution. Any c in [1, 2)

Section 2.3 Exercises

In Exercises 1–10, find the points of continuity and the points of dis-
continuity of the function. Identify each type of discontinuity.

1. y � �
�x �

1
2�2� 2. y � �

x2 �

x �

4x
1
� 3

�

3. y � �
x2

1
� 1
� None 4. y � �x � 1� None

5. y � �2	x	�	 3	 6. y � �3 2	x	�	 1	 None

7. y � �x ��x 8. y � cot x

9. y � e1�x 10. y � ln �x � 1�

In Exercises 11–18, use the function f defined and graphed below to
answer the questions.

x2 � 1, �1 � x 	 0
2x, 0 	 x 	 1

f �x� � {1, x � 1
�2x � 4, 1 	 x 	 2
0, 2 	 x 	 3

12. (a) Does f �1� exist? Yes

(b) Does limx→1 f �x� exist? Yes

(c) Does limx→1 f �x� � f �1�? No

(d) Is f continuous at x � 1? No

13. (a) Is f defined at x � 2? (Look at the definition of f.) No

(b) Is f continuous at x � 2? No

14. At what values of x is f continuous?

15. What value should be assigned to f (2) to make the extended
function continuous at x � 2? 0

16. What new value should be assigned to f (1) to make the new
function continuous at x � 1? 2

17. Writing to Learn Is it possible to extend f to be continuous
at x � 0? If so, what value should the extended function have
there? If not, why not?

18. Writing to Learn Is it possible to extend f to be continuous
at x � 3? If so, what value should the extended function have
there? If not, why not? Yes. Assign the value 0 to f(3).

In Exercises 19–24, (a) find each point of discontinuity. (b) Which of
the discontinuities are removable? not removable? Give reasons for
your answers.

3 � x, x 	 2
19. f �x� � { �

2
x

� � 1, x 
 2

20.
3 � x, x 	 2

f �x� � {2, x � 2
x�2, x 
 2

�
x �

1
1

� , x 	 1
21. f �x� � {

x3 � 2x � 5, x � 1

22.
1 � x2, x � �1

f �x� � {2, x � �1

y = f(x)

y = 2x
y = –2x + 4

y = x2 – 1

y

x
0–1

–1

(1, 1)

(1, 2)

1

2

1 2 3

11. (a) Does f ��1� exist? Yes

(b) Does limx→�1� f �x� exist? Yes

(c) Does limx→�1� f �x� � f ��1�? Yes

(d) Is f continuous at x � �1? Yes

(a) �2 (b) �1 (c) No limit (d) �1

( f ° g)(x) � �
6
x
x
�

�

2
1

�, x � 0

(g ° f)(x) � �
3
2
x
x

�

�

4
1

�, x � �5

g(x) � sin x, x � 0 ( f ° g)(x) � sin2 x, x � 0

6.  f (x) � �
x
1
2� + 1, x 
 0 (f ° g)(x) � �

x �

x
1

�, x 
 1

x � �2, infinite
discontinuity

5. All points not in the domain, i.e., all x 	 �3/2

x � 1 and x � 3,
both infinite 
discontinuities

x � 0, jump 
discontinuity

x � 0, infinite discontinuity All points not in the domain, i.e., all x 	 �1

x � kp for all integers k,
infinite discontinuity

Everywhere in [�1, 3) except for x � 0, 1, 2

No, because the right-hand and left-hand
limits are not the same at zero.

(a) x � 2 (b) Not removable, the one-
sided limits are different.

(a) x � 2 (b) Removable, assign the
value 1 to f(2).

(a) x � 1 (b) Not removable, it’s an
infinite discontinuity.

(a) x � �1 (b) Removable, assign the
value 0 to  f(�1).
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23.

24.

In Exercises 25–30, give a formula for the extended function that is
continuous at the indicated point.

25. f �x� � �
x
x

2

�

�

3
9

� , x � �3 26. f �x� � �
x
x

3

2
�

�

1
1

� , x � 1

27. f �x� � �
sin

x
x

� , x � 0 28. f �x� � �
sin

x
4x
� , x � 0

29. f �x� � �
�

x

x	
�

�

4

2
� , x � 4 y � �x	 � 2

30. f �x� � , x � 2 y � �
x2 �

x
2
�

x �

2
15

�

In Exercises 31 and 32, explain why the given function is continuous.

31. f (x) � �
x �

1
3

� 32. g(x) � �
�x

1
� 1	
�

In Exercises 33–36, use Theorem 7 to show that the given function is
continuous.

33. f (x) � 

�x �

x
1

���� 34. f (x) � sin (x2 � 1)

35. f (x) � cos (�3 1 � x	) 36. f (x) � tan 
�x2
x
�

2

4
��

Group Activity In Exercises 37–40, verify that the function is con-
tinuous and state its domain. Indicate which theorems you are using,
and which functions you are assuming to be continuous.

37. y � �
�x

1

	�	 2	
� 38. y � x2 � �3 4	 �	 x	

39. y � �x2 � 4x � 40. y � { , x � 1

2, x � 1

In Exercises 41–44, sketch a possible graph for a function f that has
the stated properties.

41. f (3) exists but limx→3 f �x� does not.

42. f (�2) exists, limx→�2� f �x� � f ��2�, but  limx→�2 f �x� does not
exist.

43. f (4) exists, limx→4 f �x� exists, but f is not continuous at x � 4.

44. f(x) is continuous for all x except x � 1, where f has a nonremov-
able discontinuity.

x2 � 1
�
x � 1

x3 � 4x2 � 11x � 30
���

x2 � 4

45. Solving Equations Is any real number exactly 1 less than its
fourth power? Give any such values accurate to 3 decimal places.

46. Solving Equations Is any real number exactly 2 more than its
cube? Give any such values accurate to 3 decimal places.

47. Continuous Function Find a value for a so that the function

x2 � 1, x 	 3
f �x� � {2ax, x � 3

is continuous. a � �
4
3

�

48. Continuous Function Find a value for a so that the function

2x � 3, x � 2
f �x� � {ax � 1, x 
 2

is continuous. a � 3

49. Continuous Function Find a value for a so that the function

4 � x2, x 	 �1
f �x� � {ax2 � 1, x � �1

is continuous. a � 4

50. Continuous Function Find a value for a so that the function

x2 � x � a, x 	 1
f �x� � {x3, x � 1

is continuous. a � �1

51. Writing to Learn Explain why the equation e�x � x has at
least one solution.

52. Salary Negotiation A welder’s contract promises a 3.5%
salary increase each year for 4 years and Luisa has an initial
salary of $36,500.

(a) Show that Luisa’s salary is given by

y � 36,500�1.035�int t,

where t is the time, measured in years, since Luisa signed the
contract.

(b) Graph Luisa’s salary function. At what values of t is it 
continuous?

53. Airport Parking Valuepark charge $1.10 per hour or fraction
of an hour for airport parking. The maximum charge per day is
$7.25.

(a) Write a formula that gives the charge for x hours with 
0 � x � 24. (Hint: See Exercise 52.)

(b) Graph the function in part (a). At what values of x is it
continuous?

Standardized Test Questions
You may use a graphing calculator to solve the following 
problems.

54. True or False A continuous function cannot have a point of
discontinuity. Justify your answer.

55. True or False It is possible to extend the definition of a func-
tion f at a jump discontinuity x � a so that f is continuous at 
x � a. Justify your answer.

–1 0 1

1

2

y

y = f(x)

x

x

y

321

2

1

–1

y � f (x)

0

(a) All points not in the domain along
with x � 0, 1
(b) x � 0 is a removable discontinuity,
assign  f(0) � 0. x � 1 is not remov-
able, the two-sided limits are different.

(a) All points not in the domain along
with x � l, 2
(b) x � 1 is not removable, the one-
sided limits are different. x � 2 is a 
removable discontinuity, assign f(2) � 1.

y � x � 3

y � �
x2 �

x �

x
1

1
�

�
sin

x
4x
�, x � 0

4, x � 0

�
sin

x
x

�, x � 0

1, x � 0

27. y �� 28. y �� 31. The domain of f is all real numbers x � 3. f is continuous at all those points so f is a continuous
function.
32. The domain of g is all real numbers x 
 1. f is continuous at all those points so g is a continuous
function.

x � �0.724 and x � 1.221

x � �1.521

�1.10 int (�x), 0 � x � 6
7.25, 6 	 x � 24

f (x) � {

False. Consider  f(x) � 1/x which is continuous and has a
point of discontinuity at x � 0.

True. If f has a jump discontinuity at
x � a, then limx→a� f (x) � limx→a� f (x) so f is not continuous at x � a.
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86 Chapter 2 Limits and Continuity

56. Multiple Choice On which of the following intervals is

f (x) � �
�
1

x�
� not continuous? B

(A) (0, �) (B) [0, �) (C) (0, 2)

(D) (1, 2) (E) [1, �)

57. Multiple Choice Which of the following points is not a point
of discontinuity of f (x) � �x � 1�? E

(A) x � �1 (B) x � �1�2 (C) x � 0

(D) x � 1�2 (E) x � 1

58. Multiple Choice Which of the following statements about the
function

2x, 0 
 x 
 1
f �x� � {1, x � 1

�x �3, 1 
 x 
 2
is not true? A

(A) f (1) does not exist.

(B) limx→0� f (x) exists.

(C) limx→2� f (x) exists.

(D) limx→1 f (x) exists.

(E) limx→1 f (x) � f (1)

59. Multiple Choice Which of the following points of 
discontinuity of

f (x) �

is not removable? E

(A) x � �1 (B) x � 0 (C) x � 1

(D) x � 2 (E) x � 3

x (x � 1)(x � 2)2(x � 1)2(x � 3)2
����
x(x � 1)(x � 2)(x � 1)2(x � 3)3

Exploration

60. Let f �x� � (1 � �
1
x

� )
x

.

(a) Find the domain of f. (b) Draw the graph of f.

(c) Writing to Learn Explain why x � �1 and x � 0 are
points of discontinuity of f.

(d) Writing to Learn Are either of the discontinuities in part
(c) removable? Explain.

(e) Use graphs and tables to estimate limx→� f �x�.

Extending the Ideas
61. Continuity at a Point Show that f(x) is continuous at x � a if

and only if This is because limh→0 f (a � h) � limx→a f (x).
lim
h→0

f �a � h� � f �a�.

62. Continuity on Closed Intervals Let f be continuous and
never zero on [a, b]. Show that either f (x) � 0 for all x in [a, b]
or f (x) 
 0 for all x in [a, b].

63. Properties of Continuity Prove that if f is continuous on an
interval, then so is � f �.

64. Everywhere Discontinuous Give a convincing argument that
the following function is not continuous at any real number.

1, if x is rational
f �x� � {0, if x is irrational

Domain of f : (��, �1) � (0, �)

Because f is undefined there due to 
division by 0.

x � 0: removable, right-hand limit is 1
x � �1; not removable, infinite discontinuity

2.718 or e
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Section 2.4 Rates of Change and Tangent Lines 87

Rates of Change and Tangent Lines

Average Rates of Change
We encounter average rates of change in such forms as average speed (in miles per hour),
growth rates of populations (in percent per year), and average monthly rainfall (in inches
per month). The average rate of change of a quantity over a period of time is the amount
of change divided by the time it takes. In general, the average rate of change of a function
over an interval is the amount of change divided by the length of the interval.

EXAMPLE 1 Finding Average Rate of Change

Find the average rate of change of f(x) � x3 � x over the interval [1, 3].

SOLUTION

Since f (1) � 0 and f (3) � 24, the average rate of change over the interval [1, 3] is

�
f �3

3
�

�

�

1
f �1�

� � �
24

2
� 0
� � 12. Now try Exercise 1.

Experimental biologists often want to know the rates at which populations grow under
controlled laboratory conditions. Figure 2.27 shows how the number of fruit flies
(Drosophila) grew in a controlled 50-day experiment. The graph was made by counting
flies at regular intervals, plotting a point for each count, and drawing a smooth curve
through the plotted points.

2.4

What you’ll learn about

• Average Rates of Change

• Tangent to a Curve

• Slope of a Curve

• Normal to a Curve

• Speed Revisited

. . . and why

The tangent line determines the
direction of a body’s motion at
every point along its path.

Figure 2.27 Growth of a fruit fly population in a controlled experiment.
Source: Elements of Mathematical Biology. (Example 2)
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Q(45, 340)
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�p = 190

�t = 22

�  9 flies/day
�p
—–
�t

Secant to a Curve

A line through two points on a curve is

a secant to the curve.

Marjorie Lee Browne
(1914–1979)

When Marjorie Browne

graduated from the Uni-

versity of Michigan in

1949, she was one of

the first two African

American women to be

awarded a Ph.D. in

Mathematics. Browne

went on to become chairperson of the

mathematics department at North 

Carolina Central University, and suc-

ceeded in obtaining grants for retraining

high school mathematics teachers.

EXAMPLE 2 Growing Drosophila in a Laboratory

Use the points P(23, 150) and Q(45, 340) in Figure 2.27 to compute the average rate of
change and the slope of the secant line PQ.

SOLUTION

There were 150 flies on day 23 and 340 flies on day 45. This gives an increase of 340 �
150 � 190 flies in 45 � 23 � 22 days.

The average rate of change in the population p from day 23 to day 45 was

Average rate of change: �
�
�

p
t

� � �
34
4
0
5

�

�

1
2
5
3
0

� � �
1
2
9
2
0

� � 8.6 flies/day,

or about 9 flies per day.
continued
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88 Chapter 2 Limits and Continuity

This average rate of change is also the slope of the secant line through the two points P
and Q on the population curve. We can calculate the slope of the secant PQ from the co-
ordinates of P and Q.

Secant slope: �
�
�

p
t

� � �
34
4
0
5

�

�

1
2
5
3
0

� � �
1
2
9
2
0

� � 8.6 flies/day

Now try Exercise 7.

As suggested by Example 2, we can always think of an average rate of change as the
slope of a secant line.

In addition to knowing the average rate at which the population grew from day 23 to
day 45, we may also want to know how fast the population was growing on day 23 itself.
To find out, we can watch the slope of the secant PQ change as we back Q along the curve
toward P. The results for four positions of Q are shown in Figure 2.28.

Why Find Tangents to Curves?

In mechanics, the tangent determines

the direction of a body’s motion at

every point along its path.

In geometry, the tangents to two curves

at a point of intersection determine the

angle at which the curves intersect.

In optics, the tangent determines the

angle at which a ray of light enters a

curved lens (more about this in Section

3.7). The problem of how to find a tan-

gent to a curve became the dominant

mathematical problem of the early 

seventeenth century and it is hard to

overestimate how badly the scientists of

the day wanted to know the answer.

Descartes went so far as to say that the

problem was the most useful and most

general problem not only that he knew

but that he had any desire to know.

Ta
ng

en
tPath of

motion

Direction of
motion at time t

Position of body
at time t

TangentTa
ng

en
t

Angle between
curves

Figure 2.28 (a) Four secants to the fruit fly graph of Figure 2.27, through the point P(23, 150).
(b) The slopes of the four secants.
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B
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(b)

(45, 340)
(40, 330)
(35, 310)
(30, 265)

Q Slope of PQ = �p/�t (flies/day)

(340 – 150)/(45 – 23) �
(330 – 150)/(40 – 23) �
(310 – 150)/(35 – 23) �
(265 – 150)/(30 – 23) � 

8.6
10.6
13.3
16.4

In terms of geometry, what we see as Q approaches P along the curve is this: The se-
cant PQ approaches the tangent line AB that we drew by eye at P. This means that within
the limitations of our drawing, the slopes of the secants approach the slope of the tangent,
which we calculate from the coordinates of A and B to be

�
3
3
5
5
0
�

�

1
0
5

� � 17.5 flies/day.

In terms of population, what we see as Q approaches P is this: The average growth
rates for increasingly smaller time intervals approach the slope of the tangent to the curve
at P (17.5 flies per day). The slope of the tangent line is therefore the number we take as
the rate at which the fly population was growing on day t � 23.

Tangent to a Curve
The moral of the fruit fly story would seem to be that we should define the rate at which
the value of the function y � f (x) is changing with respect to x at any particular value 
x � a to be the slope of the tangent to the curve y � f (x) at x � a. But how are we to de-
fine the tangent line at an arbitrary point P on the curve and find its slope from the for-
mula y � f (x)? The problem here is that we know only one point. Our usual definition of
slope requires two points.

The solution that mathematician Pierre Fermat found in 1629 proved to be one of that
century’s major contributions to calculus. We still use his method of defining tangents to
produce formulas for slopes of curves and rates of change:

1. We start with what we can calculate, namely, the slope of a secant through P and
a point Q nearby on the curve.

5128_CH02_58-97.qxd  1/13/06  9:04 AM  Page 88



Section 2.4 Rates of Change and Tangent Lines 89

2. We find the limiting value of the secant slope (if it exists) as Q approaches P
along the curve.

3. We define the slope of the curve at P to be this number and define the tangent to
the curve at P to be the line through P with this slope.

EXAMPLE 3 Finding Slope and Tangent Line

Find the slope of the parabola y � x2 at the point P(2, 4). Write an equation for the tan-
gent to the parabola at this point.

SOLUTION

We begin with a secant line through P(2, 4) and a nearby point Q(2 � h, (2 � h)2) on
the curve (Figure 2.29).

Pierre de Fermat
(1601–1665)

The dynamic approach

to tangency, invented by

Fermat in 1629, proved

to be one of the seven-

teenth century’s major

contributions to calcu-

lus.

Fermat, a skilled linguist

and one of his century’s greatest math-

ematicians, tended to confine his writ-

ing to professional correspondence and

to papers written for personal friends.

He rarely wrote completed descriptions

of his work, even for his personal use.

His name slipped into relative obscurity

until the late 1800s, and it was only

from a four-volume edition of his works

published at the beginning of this cen-

tury that the true importance of his

many achievements became clear.

Figure 2.30 The tangent slope is 

lim
h→0

�
f �a � h

h
� � f �a�
� .

y

x
a + h

h

f(a + h) – f(a)

Q(a + h, f(a + h))

y = f(x)

a0

P(a, f(a))

y

y = x2

Q(2 + h, (2 + h)2)

Tangent slope = 4

Secant slope is (2 + h)2 – 4
h

= h + 4

2 + h2 0 

P(2, 4)

�y = (2 + h)2 – 4

�x = h
x

Figure 2.29 The slope of the tangent to the parabola y � x2 at P(2, 4) is 4.

We then write an expression for the slope of the secant line and find the limiting value
of this slope as Q approaches P along the curve.

Secant slope � �
�
�y

x
� � �

�2 � h
h
�2 � 4
�

��
h2 � 4h

h
� 4 � 4
�

� �
h2 �

h
4h

� � h � 4

The limit of the secant slope as Q approaches P along the curve is 

lim
Q→P

�secant slope� � lim
h→0

�h � 4� � 4.

Thus, the slope of the parabola at P is 4.

The tangent to the parabola at P is the line through P(2, 4) with slope m � 4.

y � 4 � 4�x � 2�

y � 4x � 8 � 4

y � 4x � 4 Now try Exercise 11 (a, b).

Slope of a Curve
To find the tangent to a curve y � f (x) at a point P(a, f (a)) we use the same dynamic proce-
dure. We calculate the slope of the secant line through P and a point Q(a � h, f(a � h)). We
then investigate the limit of the slope as h→0 (Figure 2.30). If the limit exists, it is the slope
of the curve at P and we define the tangent at P to be the line through P having this slope.
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90 Chapter 2 Limits and Continuity

Figure 2.31 The two tangent lines to 
y � 1�x having slope �1�4. (Example 4)

–2, – 1
2

2, 

x 

y

y = 

1
2

1
x

The tangent line to the curve at P is the line through P with this slope.

EXAMPLE 4 Exploring Slope and Tangent

Let f (x) � 1�x.

(a) Find the slope of the curve at x � a.
(b) Where does the slope equal �1�4?
(c) What happens to the tangent to the curve at the point (a, 1�a) for different values of a?

SOLUTION

(a) The slope at x � a is

lim
h→0

�
f �a � h

h
� � f �a�
�� lim

h→0

� lim
h→0

�
1
h

� • �
a

a
�

�a
�a
�

�

h�
h�

�

� lim
h→0

• �
ha�

�

a �

h
h�

�

� lim
h→0

�
a�a

�

�

1
h�

� � ��
a
1
2�.

(b) The slope will be �1�4 if

��
a
1

2� � � �
1
4

�

a2 � 4 Multiply by �4a2.

a � �2.

The curve has the slope �1�4 at the two points (2, 1�2) and (�2, �1�2) (Figure 2.31).
(c) The slope �1�a2 is always negative. As a→0�, the slope approaches �� and the tan-
gent becomes increasingly steep. We see this again as a→0�. As a moves away from the
origin in either direction, the slope approaches 0 and the tangent becomes increasingly
horizontal. Now try Exercise 19.

The expression

�
f �a � h

h
� � f �a�
�

is the difference quotient of f at a. Suppose the difference quotient has a limit as h ap-
proaches zero. If we interpret the difference quotient as a secant slope, the limit is the
slope of both the curve and the tangent to the curve at the point x � a. If we interpret the
difference quotient as an average rate of change, the limit is the function’s rate of
change with respect to x at the point x � a. This limit is one of the two most important
mathematical objects considered in calculus. We will begin a thorough study of it in
Chapter 3.

�
a �

1
h

� � �
1
a

�

��
h

All of these are the same:

1. the slope of y � f(x) at x � a
2. the slope of the tangent to y � f(x)

at x � a
3. the (instantaneous) rate of change of

f(x) with respect to x at x � a

4. lim
h→0

�
f (a � h

h
) � f (a)
�

DEFINITION Slope of a Curve at a Point

The slope of the curve y � f (x) at the point P(a, f (a)) is the number

m � lim
h→0

�
f �a � h

h
� � f �a�
� ,

provided the limit exists.
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Normal to a Curve
The normal line to a curve at a point is the line perpendicular to the tangent at that point.

EXAMPLE 5 Finding a Normal Line

Write an equation for the normal to the curve f (x) � 4 � x2 at x � 1.

SOLUTION

The slope of the tangent to the curve at x � 1 is

lim
h→0

�
f �1 � h

h
� � f �1�
�� lim

h→0
�
4 � �1 �

h
h�2 � 3
�

� lim
h→0

� lim
h→0

�
�h�2

h
� h�
� � �2.

Thus, the slope of the normal is 1�2, the negative reciprocal of �2. The normal to the
curve at (1, f (1)) � (1, 3) is the line through (1, 3) with slope m � 1�2.

y � 3 � �
1
2

� �x � 1�

y � �
1
2

� x � �
1
2

� � 3

y � �
1
2

� x � �
5
2

�

You can support this result by drawing the graphs in a square viewing window.
Now try Exercise 11 (c, d).

Speed Revisited
The function y � 16t2 that gave the distance fallen by the rock in Example 1, Section 2.1,
was the rock’s position function. A body’s average speed along a coordinate axis (here, the
y-axis) for a given period of time is the average rate of change of its position y � f (t). Its
instantaneous speed at any time t is the instantaneous rate of change of position with
respect to time at time t, or

lim
h→0

�
f �t � h

h
� � f �t�
� .

We saw in Example 1, Section 2.1, that the rock’s instantaneous speed at t � 2 sec was 
64 ft/sec.

EXAMPLE 6 Investigating Free Fall

Find the speed of the falling rock in Example 1, Section 2.1, at t � 1 sec.

SOLUTION

The position function of the rock is f(t) � 16t2. The average speed of the rock over the
interval between t � 1 and t � 1 � h sec was

�
f �1 � h

h
� � f �1�
�� � �

16�h2

h
� 2h�
� � 16�h � 2�.

The rock’s speed at the instant t � 1 was

lim
h→0

16�h � 2� � 32 ft�sec.

Now try Exercise 27.

16�1 � h�2 � 16�1�2

���
h

4 � 1 � 2h � h2 � 3
���

h

Particle Motion

We only have considered objects 

moving in one direction in this chapter.

In Chapter 3, we will deal with more

complicated motion.

About the Word Normal

When analytic geometry was developed

in the seventeenth century, European

scientists still wrote about their work

and ideas in Latin, the one language

that all educated Europeans could read

and understand. The Latin word

normalis, which scholars used for per-
pendicular, became normal when they

discussed geometry in English.
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Quick Review 2.4 (For help, go to Section 1.1.)

In Exercises 1 and 2, find the increments �x and �y from point A to
point B.

1. A(–5, 2), B(3, 5) 2. A(1, 3), B(a, b)

In Exercises 3 and 4, find the slope of the line determined by the
points.

3. (–2, 3), (5, –1) Slope ���
4
7

� 4. (–3, –1), (3, 3) Slope � �
2
3

�

In Exercises 5–9, write an equation for the specified line.

5. through (–2, 3) with slope � 3�2 y � �
3
2

�x � 6

6. through (1, 6) and (4, –1) y � ��
7
3

� x � �
2
3
5
�

7. through (1, 4) and parallel to y � � �
3
4

� x � 2 y ���
3
4

� x � �
1
4
9
�

8. through (1, 4) and perpendicular to y � � �
3
4

� x � 2 y � �
4
3

� x � �
8
3

�

9. through (–1, 3) and parallel to 2x � 3y � 5 y � �
�

2
3
�x � �

7
3

�

10. For what value of b will the slope of the line through (2, 3) and
(4, b) be 5�3? b � �

1
3
9
�

Section 2.4 Exercises

In Exercises 1–6, find the average rate of change of the function over
each interval.

1. f �x� � x3 � 1 (a) 19  (b) 1

(a) �2, 3� (b) ��1, 1�
3. f �x� � ex

(a) ��2, 0� (b) �1, 3�
5. f �x� � cot t

(a) �p�4, 3p�4� (b) �p�6, p�2�
6. f �x� � 2 � cos t (a) ��

p

2
� � �0.637 (b) 0

(a) �0, p � (b) ��p , p �
In Exercises 7 and 8, a distance-time graph is shown.

(a) Estimate the slopes of the secants PQ1, PQ2, PQ3, and PQ4,
arranging them in order in a table. What is the appropriate unit
for these slopes?

(b) Estimate the speed at point P.

7. Accelerating from a Standstill The figure shows the dis-
tance-time graph for a 1994 Ford® Mustang Cobra™ accelerat-
ing from a standstill.

8. Lunar Data The accompanying figure shows a distance-time
graph for a wrench that fell from the top platform of a communi-
cation mast on the moon to the station roof 80 m below.
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In Exercises 9–12, at the indicated point find

(a) the slope of the curve,

(b) an equation of the tangent, and

(c) an equation of the normal.

(d) Then draw a graph of the curve, tangent line, and normal
line in the same square viewing window.

9. y � x2 at x � �2 10. y � x2 � 4x at  x � 1

11. y � �
x �

1
1

� at x � 2 12. y � x2 � 3x � 1 at x � 0

In Exercises 13 and 14, find the slope of the curve at the indicated point.

13. f �x� � �x � at (a) x � 2 (b) x � �3 (a) 1 (b) �1

14. f �x� � �x � 2 � at x � 1 �1

In Exercises 15–18, determine whether the curve has a tangent at the
indicated point. If it does, give its slope. If not, explain why not.

15.
2 � 2x � x2, x 	 0

f �x� � {2x � 2, x � 0
at x � 0

16.
�x, x 	 0

f �x� � {x2 � x, x � 0
at x � 0 Yes. The slope is �1.

4. f �x� � ln x

(a) �1, 4� (b) �100, 103�

2. f �x� � �4	x	�	 1	
(a) �0, 2� (b) �10, 12�

�x � 8, �y � 3 �x � a � 1, �y � b � 3

(a) 1 (b) �
7 �

2
�41	
� � 0.298

3. (a) �
1 �

2
e�2
� � 0.432 (b) �

e3

2
� e
� � 8.684 4. (a) �

ln
3

4
� � 0.462 (b) �

ln (10
3
3�100)
� � �

ln 1
3
.03
� � 0.0099

(a) ��
p

4
� � �1.273 (b) ��

3 �
p

3	
� � �1.654

Using Q1 � (10, 225), Q2 � (14, 375),
Q3 � (16.5, 475),
Q4 � (18, 550), and P � (20, 650)
(a) Secant Slope

PQ1 43
PQ2 46
PQ3 50
PQ4 50

Units are meters/second
(b) Approximately 50 m/sec

Using Q1 � (5, 20),
Q2 � (7, 38), Q3 � (8.5, 56),
Q4 � (9.5, 72), and 
P � (10, 80)
(a) Secant Slope

PQ1 12
PQ2 14
PQ3 16
PQ4 16
Units are meters/second

(b) Approximately 16 m/sec

No. Slope from the left is �2; slope from the right is 2. The two-sided limit of
the difference quotient
doesn’t exist.
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1�x, x � 2
17. f �x� � {�

4 �

4
x

� , x 
 2 at x � 2
Yes. The slope is ��

1
4

�.

18.
sin x, 0 � x 	 3p�4

f �x� � {cos x, 3p�4 � x � 2p
at x � 3p�4

In Exercises 19–22, (a) find the slope of the curve at x � a. 
(b) Writing to Learn Describe what happens to the tangent at 
x � a as a changes.

19. y � x2 � 2

20. y � 2�x

21. y � �
x �

1
1

�

22. y � 9 � x2

23. Free Fall An object is dropped from the top of a 100-m tower.
Its height above ground after t sec is 100 � 4.9t2 m. How fast is
it falling 2 sec after it is dropped? 19.6 m/sec

24. Rocket Launch At t sec after lift-off, the height of a rocket is
3t2 ft. How fast is the rocket climbing after 10 sec? 60 ft/sec

25. Area of Circle What is the rate of change of the area of a cir-
cle with respect to the radius when the radius is r � 3 in.?

26. Volume of Sphere What is the rate of change of the volume
of a sphere with respect to the radius when the radius is r � 2 in.?

27. Free Fall on Mars The equation for free fall at the surface of
Mars is s �1.86t2 m with t in seconds. Assume a rock is dropped
from the top of a 200-m cliff. Find the speed of the rock at t � 1 sec.

28. Free Fall on Jupiter The equation for free fall at the surface
of Jupiter is s � 11.44t 2 m with t in seconds. Assume a rock is
dropped from the top of a 500-m cliff. Find the speed of the 
rock at t � 2 sec. 45.76 m/sec

29. Horizontal Tangent At what point is the tangent to 
f(x) � x2 � 4x � 1 horizontal? (�2, �5)

30. Horizontal Tangent At what point is the tangent to 
f (x) � 3 � 4x � x2 horizontal? (�2, 7)

31. Finding Tangents and Normals

(a) Find an equation for each tangent to the curve y � 1�(x � 1)
that has slope �1. (See Exercise 21.)

(b) Find an equation for each normal to the curve y � 1�(x � 1)
that has slope 1. At x � 0: y � x � 1 At x � 2: y � x � 1

32. Finding Tangents Find the equations of all lines tangent to 
y � 9 � x2 that pass through the point (1, 12).

33. Table 2.2 gives the amount of federal spending in billions of 
dollars for national defense for several years.

Table 2.2 National Defense Spending

Year National Defense Spending ($ billions)

1990 299.3
1995 272.1
1999 274.9
2000 294.5
2001 305.5
2002 348.6
2003 404.9

Source: U.S. Census Bureau, Statistical Abstract of the United
States, 2004–2005.

(a) Find the average rate of change in spending from 
1990 to 1995. �5.4 billion dollars per year

(b) Find the average rate of change in spending from 
2000 to 2001. 11.0 billion dollars per year

(c) Find the average rate of change in spending from 
2002 to 2003. 56.3 billion dollars per year

(d) Let x � 0 represent 1990, x � 1 represent 1991, and so
forth. Find the quadratic regression equation for the data and
superimpose its graph on a scatter plot of the data.

(e) Compute the average rates of change in parts (a), (b), and
(c) using the regression equation.

(f) Use the regression equation to find how fast the spending
was growing in 2003. 34.3 billion dollars per year

(g) Writing to Learn Explain why someone might be
hesitant to make predictions about the rate of change of 
national defense spending based on this equation.

34. Table 2.3 gives the amount of federal spending in billions of 
dollars for agriculture for several years.

Table 2.3 Agriculture Spending

Year Agriculture Spending ($ billions)

1990 12.0
1995 9.8
1999 23.0
2000 36.6
2001 26.4
2002 22.0
2003 22.6

Source: U.S. Census Bureau, Statistical Abstract of the United
States, 2004–2005.

(a) Let x � 0 represent 1990, x � 1 represent 1991, and so
forth. Make a scatter plot of the data.

(b) Let P represent the point corresponding to 2003, Q1 the
point corresponding to 2000, Q2 the point corresponding to
2001, and Q3 the point corresponding to 2002. Find the
slope of the secant line PQi for i � 1, 2, 3.

18. No. The function is discontinuous at x � �
3
4
p
�. The left-hand limit of the dif-

ference quotient doesn’t exist.

(a) 2a (b) The slope of the tangent steadily increases as a
increases.

(a) ��
(a �

1
1)2� (b) The slope of the tangent is always negative. The

tangents are very steep near x � 1 and nearly
horizontal as a moves away from the origin.

(a) �2a (b) The slope of the tangent steadily decreases as a increases.

6p in2/in.

16p in3/in.

3.72 m/sec

At x � 0: y � �x � 1
At x � 2: y � �x � 3

At x � �1: y � 2x � 10 At x � 3: y � �6x � 18 Slope of PQ1 � �4.7, Slope of PQ2 � �1.9, Slope of PQ3 � 0.6.

y � 2.177x � 22.315x � 306.443

(e) 1990 to 1995: �11.4
billion dollars per year;
2000 to 2001: 23.4 billion
dollars per year; 2002 to
2003: 32.1 billion dollars
per year

One possible reason is that the war in Iraq and increased spending to prevent ter-
rorist attacks in the U.S. caused an unusual increase in defense spending.

(a) ��
a
2
2�

(b) The slope of the tangent is always negative. 
The tangents are very steep near x � 0 and nearly 
horizontal as a moves away from the origin.

5128_CH02_58-97.qxd  1/13/06  9:05 AM  Page 93



94 Chapter 2 Limits and Continuity

Standardized Test Questions
You should solve the following problems without using a
graphing calculator.

35. True or False If the graph of a function has a tangent line at 
x � a, then the graph also has a normal line at x � a. Justify
your answer.

36. True or False The graph of f (x)�|x | has a tangent line at 
x � 0. Justify your answer.

37. Multiple Choice If the line L tangent to the graph of a func-
tion f at the point (2, 5) passes through the point (�1, �3), what
is the slope of L? D

(A) �3�8 (B) 3�8 (C) �8�3 (D) 8�3 (E) undefined

38. Multiple Choice Find the average rate of change of
f (x) � x2 � x over the interval [1, 3]. E

(A) �5 (B) 1�5 (C) 1�4 (D) 4 (E) 5

39. Multiple Choice Which of the following is an equation of the
tangent to the graph of f (x) � 2�x at x � 1? C

(A) y � �2x (B) y � 2x (C) y � �2x � 4

(D) y � �x � 3 (E) y � x � 3

40. Multiple Choice Which of the following is an equation of the
normal to the graph of f (x) � 2�x at x � 1? A

(A) y � �
1
2

�x � �
3
2

� (B) y ���
1
2

�x (C) y � �
1
2

�x � 2

(D) y � ��
1
2

�x � 2 (E) y � 2x � 5

Explorations
In Exercises 41 and 42, complete the following for the function.

(a) Compute the difference quotient

�
f �1 � h

h
� � f �1�
� .

(b) Use graphs and tables to estimate the limit of the difference
quotient in part (a) as h→0.

(c) Compare your estimate in part (b) with the given number.

(d) Writing to Learn Based on your computations, do you
think the graph of f has a tangent at x � 1? If so, estimate its
slope. If not, explain why not.

41. f (x) � ex, e 42. f (x) � 2x, ln 4

Group Activity In Exercises 43–46, the curve y � f (x) has a
vertical tangent at x � a if

lim
h→0

�
f �a � h

h
� � f �a�
�� �

or if

lim
h→0

�
f �a � h

h
� � f �a�
�� ��.

In each case, the right- and left-hand limits are required to be the
same: both �� or both ��.
Use graphs to investigate whether the curve has a vertical tangent at
x � 0.

43. y � x2�5 No 44. y � x3�5 Yes

45. y � x1�3 Yes 46. y � x2�3 No

Extending the Ideas
In Exercises 47 and 48, determine whether the graph of the function
has a tangent at the origin. Explain your answer.

x 2 sin �
1
x

� , x � 0
47. f �x� � {0, x � 0

x sin �
1
x

� , x � 0
48. f �x� � {0, x � 0

49. Sine Function Estimate the slope of the curve y � sin x at 
x � 1. (Hint: See Exercises 41 and 42.) Slope � 0.540

Quick Quiz for AP* Preparation: Sections 2.3 and 2.4

You may use a calculator with these problems.

1. Multiple Choice Which of the following values is the average
rate of f (x) � �x � 1	 over the interval (0, 3)? D

(A) �3 (B) �1 (C) �1�3 (D) 1�3 (E) 3

2. Multiple Choice Which of the following statements is false
for the function

�
3
4

�x, 0 � x 	 4

f �x� � 2, x � 4{�x � 7, 4 	 x � 6

1, 6 	 x 	 8? E

(A) limx→ 4 f (x) exists (B) f (4) exists

(C) limx→ 6 f (x) exists (D) limx→8� f (x) exists

(E) f is continuous at x � 4

3. Multiple Choice Which of the following is an equation for
the tangent line to f (x) � 9 � x2 at x � 2? B

(A) y � �
1
4

�x � �
9
2

� (B) y � �4x � 13

(C) y � �4x � 3 (D) y � 4x � 3

(E) y � 4x � 13

4. Free Response Let f (x) � 2x � x2.

(a) Find f (3). �3 (b) Find f (3 � h). �3 � 4h �h2

(c) Find �
f (3 � h

h
) � f (3)
�. �4 � h

(d) Find the instantaneous rate of change of f at x � 3. �4

True. The normal line is perpendicular to the tangent line
at the point.

False. There’s no tangent at x � 0 because f has no slope at x � 0.

41. (a) �
e1�h

h
� e
�

(b) Limit � 2.718 (c) They’re about the same. (d) Yes, it has a tangent whose slope is about e.

42. (a) �
21�h

h
� 2
� (b) Limit � 1.386 (c) They’re about the same. (d) Yes, it has a tangent whose slope is about 4 ln.

5128_CH02_58-97.qxd  1/13/06  9:05 AM  Page 94
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average rate of change (p. 87)

average speed (p. 59)

connected graph (p. 83)

Constant Multiple Rule for Limits (p. 61)

continuity at a point (p. 78)

continuous at an endpoint (p. 79)

continuous at an interior point (p. 79)

continuous extension (p. 81)

continuous function (p. 81)

continuous on an interval (p. 81)

difference quotient (p. 90)

Difference Rule for Limits (p. 61)

discontinuous (p. 79)

end behavior model (p. 74)

free fall (p. 91)

horizontal asymptote (p. 70)

infinite discontinuity (p. 80)

instantaneous rate of change (p. 91)

instantaneous speed (p. 91)

intermediate value property (p. 83)

Intermediate Value Theorem for Continuous
Functions (p. 83)

jump discontinuity (p. 80)

left end behavior model (p. 74)

left-hand limit (p. 64)

limit of a function (p. 60)

normal to a curve (p. 91)

oscillating discontinuity (p. 80)

point of discontinuity (p. 79)

Power Rule for Limits (p. 71)

Product Rule for Limits (p. 61)

Properties of Continuous Functions (p. 82)

Quotient Rule for Limits (p. 61)

removable discontinuity (p. 80)

right end behavior model (p. 74)

right-hand limit (p. 64)

Sandwich Theorem (p. 65)

secant to a curve (p. 87)

slope of a curve (p. 89)

Sum Rule for Limits (p. 61)

tangent line to a curve (p. 88)

two-sided limit (p. 64)

vertical asymptote (p. 72)

vertical tangent (p. 94)

Chapter 2 Key Terms

The collection of exercises marked in red could be used as a chapter
test.

In Exercises 1–14, find the limits.

1. lim
x→�2

�x3 � 2x2 � 1� �15 2. lim
x→�2

�
3x2

x
�

2 �

2x
1
� 5

� �
2

5

1
�

3. lim
x→4

�1	 �	 2	x	 No limit 4. lim
x→5

�4 9	 �	 x	2	 No limit

5. lim
x→0

��
1
4

� 6. lim
x→��

�
2
5x

x
2

2

�

�

7
3

� �
2
5

�

7. lim
x→��

��, �� 8. lim
x→0

�
1
2

�

9. lim
x→0

2 10. lim
x→0

ex sin x 0

11. lim
x→7�2�

int �2x � 1� 6 12. lim
x→7�2�

int �2x � 1� 5

13. lim
x→�

e�x cos x 0 14. lim
x→�

�
x
x

�
�

c
s
o
in
s

x
x

� 1

x csc x � 1
��

x csc x

sin 2x
�

4x
x4 � x3

��
12x3 � 128

�
2 �

1
x

� � �
1
2

�

��
x

In Exercises 15–20, determine whether the limit exists on the basis
of the graph of  y � f �x�.  The domain of f is the set of real numbers.

15. lim
x→d

f �x� Limit exists 16. lim
x→c�

f �x� Limit exists

17. lim
x→c�

f �x� Limit exists 18. lim
x→c

f �x� Doesn’t exist

19. lim
x→b

f �x� Limit exists 20. lim
x→a

f �x� Limit exists

In Exercises 21–24, determine whether the function f used in 
Exercises 15–20 is continuous at the indicated point.

21. x � a Yes 22. x � b No

23. x � c No 24. x � d Yes

Chapter 2 Review Exercises

y = f (x)

a b c d
x

y
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96 Chapter 2 Limits and Continuity

(1, 1.5)

y = k(x)

1–1

1

2

0 2 3
x

y

(3, 1.5)
y = g(x)

1–1

1

2

0 2 3
x

y

In Exercises 25 and 26, use the graph of the function with domain
�1 � x � 3.

25. Determine

(a) lim
x→3�

g�x�. 1 (b) g�3�. 1.5

(c) whether g�x� is continuous at  x � 3. No

(d) the points of discontinuity of g�x�.

(e) Writing to Learn whether any points of discontinuity are
removable. If so, describe the new function. If not, explain why
not.

26. Determine

(a) lim
x→1�

k�x�. 1.5 (b) lim
x→1�

k�x�. 0 (c) k�1�. 0

(d) whether k�x� is continuous at  x � 1. No

(e) the points of discontinuity of k �x�.

(f) Writing to Learn whether any points of discontinuity are
removable. If so, describe the new function. If not, explain why
not.

In Exercises 27 and 28, (a) find the vertical asymptotes of the graph
of y � f (x), and (b) describe the behavior of f (x) to the left and right
of any vertical asymptote.

27. f �x� � �
x
x

�

�

3
2

� 28. f �x� � �
x2

x
�x
�

�

1
2�

�

In Exercises 29 and 30, answer the questions for the piecewise-
defined function.

1, x � �1
�x, �1 	 x 	 0

29. f �x� � {1, x � 0
�x, 0 	 x 	 1
1, x � 1

(a) Find the right-hand and left-hand limits of f at x � �1, 0, and 1.

(b) Does f have a limit as x approaches �1? 0? 1? If so, what is
it? If not, why not?

(c) Is f continuous at x � –1? 0? 1? Explain.

30.
�x3 � 4x �, x 	 1

f �x� � {x2 � 2x � 2, x � 1

(a) Find the right-hand and left-hand limits of f at x � 1.

(b) Does f have a limit as x→1? If so, what is it? If not, why
not? No, because the two one-sided limits are different.

(c) At what points is f continuous? Every place except for x � 1

(d) At what points is f discontinuous? At x � 1

In Exercises 31 and 32, find all points of discontinuity of the function.

31. f �x� � �
4
x

�

�

x
1

2� 32. g�x� � �3 3	x	�	 2	

In Exercises 33–36, find (a) a power function end behavior model
and (b) any horizontal asymptotes.

33. f �x� � �
x2

2
�

x
2
�

x
1
� 1

� 34. f �x� � �
2x2

x
�
2 �

5x
2x

� 1
�

35. f �x� ��
x3 � 4x

x

2

�

�

3
3x � 3

� 36. f �x� ��
x4 �

x3
3
�

x2

x
�

�

x
1
� 1

�

In Exercises 37 and 38, find (a) a right end behavior model and (b) a
left end behavior model for the function.

37. f �x� � x � ex (a) ex (b) x 38. f �x� � ln �x � � sin x

Group Activity In Exercises 39 and 40, what value should be as-
signed to k to make f a continuous function?

�
x2 �

x
2
�

x
3
� 15
� , x � 3

39. f �x� � {k , x � 3 k � 8

�
si
2
n
x
x

� , x � 0
40. f �x� � {k , x � 0 k � �

1
2

�

Group Activity In Exercises 41 and 42, sketch a graph of a func-
tion f that satisfies the given conditions.

41. lim
x→�

f �x� � 3, lim
x→��

f �x� � �,

lim
x→3�

f �x� � ∞, lim
x→3�

f �x� � ��

42. lim
x→2

f �x� does not exist, lim
x→2�

f �x� � f �2� � 3

43. Average Rate of Change Find the average rate of change of
f (x) � 1 � sin x over the interval [0, p�2]. �

p

2
�

44. Rate of Change Find the instantaneous rate of change of the
volume V � �1�3�pr2H of a cone with respect to the radius r at 
r � a if the height H does not change. �

2
3

�paH

45. Rate of Change Find the instantaneous rate of change of the
surface area S � 6x2 of a cube with respect to the edge length x
at x � a. 12a

46. Slope of a Curve Find the slope of the curve y � x2 � x � 2 at 
x � a. 2a � 1

47. Tangent and Normal Let f (x) � x2 � 3x and P � (1, f (1)).
Find (a) the slope of the curve y � f (x) at P, (b) an equation of
the tangent at P, and (c) an equation of the normal at P.

g is discontinuous at x � 3
(and points not in domain).

Yes, can remove discontinuity at x � 3 by assigning
the value 1 to g(3).

k is discontinuous at x � 1 (and
points not in domain).

Discontinuity at x � 1 is not removable because the two one-sided
limits are different.

Left-hand limit � 3 Right-hand limit � �3

x � �2 and x � 2

There are no points of discontinuity.

(a) 2 (b) y � 2

(a) 2/x  
(b) y � 0 (x-axis)

(a) x2 (b) None (a) x (b) None

(a) ln⏐x⏐ (b) ln⏐x⏐

(a) �1 (b) y � �x � 1 (c) y � x � 3
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48. Horizontal Tangents At what points, if any, are the tangents
to the graph of f (x) � x2 � 3x horizontal? (See Exercise 47.)

49. Bear Population The number of bears in a federal wildlife
reserve is given by the population equation

p �t� � �
1 �

2
7
0
e
0
�0.1t� ,

where t is in years.

(a) Writing to Learn Find p(0). Give a possible interpreta-
tion of this number.

(b) Find lim
t→�

p �t�.
200

(c) Writing to Learn Give a possible interpretation of the re-
sult in part (b).

50. Taxi Fares Bluetop Cab charges $3.20 for the first mile and
$1.35 for each additional mile or part of a mile.

(a) Write a formula that gives the charge for x miles with 
0 � x � 20.

(b) Graph the function in (a). At what values of x is it 
discontinuous? f is discontinuous at integer values of x: 0, 1, 2, . . . , 19

51. Table 2.4 gives the population of Florida for several years.

52. Limit Properties Assume that

lim
x→c

� f �x� � g�x�� � 2,

lim
x→c

� f �x� � g�x�� � 1,

and that  limx→c f �x� and  limx→c g�x� exist. Find  
limx→c f �x� and  limx→c g�x�.
limx→c f (x) � 3/2; limx→c g(x) � 1/2

Table 2.4 Population of Florida

Year Population (in thousands)

1998 15,487
1999 15,759
2000 15,983
2001 16,355
2002 16,692
2003 17,019

Source: U.S. Census Bureau, Statistical Abstract of the United
States; 2004–2005.

AP* Examination Preparation
You should solve the following problems without using a
graphing calculation.

53. Free Response Let f (x) � �
�x2 �

x
9�

�.

(a) Find the domain of f.

(b) Write an equation for each vertical asymptote of the graph of f.

(c) Write an equation for each horizontal asymptote of the 
graph of f. y � 0

(d) Is f odd, even, or neither? Justify your answer.

(e) Find all values of x for which f is discontinuous and classify 
each discontinuity as removable or nonremovable.

54. Free Response Let f (x) � �
(a) Find limx→2� f (x). limx→2� f (x) � limx→2� (x2 � a2x) � 4 � 2a2.

(b) Find limx→2� f (x). limx→2� f (x) � limx→2� (4 � 2x2) � �4

(c) Find all values of a that make f continuous at 2. Justify your 
answer.

55. Free Response Let f (x) � �
x3 �

x2
2
�

x2

3
� 1

�.

(a) Find all zeros of f.

(b) Find a right end behavior model g(x) for f. g(x) � x.

(c) Determine lim
x→∞

f �x� and lim
x→∞

�
g
f (
(
x
x
)
)

�.

x2 � a2x if x 	 2,
4 � 2x2 if x � 2.

(a) Let x � 0 represent 1990, x � 1 represent 1991, and so forth.
Make a scatter plot for the data.

(b) Let P represent the point corresponding to 2003, Q1 the
point corresponding to 1998, Q2 the point corresponding to
1999, . . . , and Q5 the point corresponding to 2002. Find the
slope of the secant the PQi for i � 1, 2, 3, 4, 5.

(c) Predict the rate of change of population in 2003.

(d) Find a linear regression equation for the data, and use it to
calculate the rate of the population in 2003.


�
3
2

�, ��
9
4

��

25. Perhaps this is the number of bears placed in the
reserve when it was established.

49. (c) Perhaps this is the maximum number of bears which the reserve can
support due to limitations of food, space, or other resources. Or, perhaps the
number is capped at 200 and excess bears are moved to other locations.

3.20 � 1.35 � int (�x � 1), 0 	 x � 20
0, x � 0

f (x) � �

51. (b) Slope of PQ1 � 306.4; slope of PQ2 � 315; slope of PQ3 � 345.3; slope of
PQ4 � 332; slope of PQ5 � 327
(c) We use the average rate of change in the population from 2002 to 2003
which is 327,000.
(d) y � 309.457x � 12966.533, rate of change is 309 thousand because rate of
change of a linear function is its slope.

x � �3 and x � 3

53. (d) Odd, because f (�x) � �|(�x
�
)2

x
� 9|� � �|x2 �

x
9|� � �f (x) for all x in the domain.

x � �3 and x � 3. Both are nonremovable.

54. (c) For limx→2 f (x) to exist, we must have 4 � 2a2 � �4, so a � �2. If a � �2,
then limx→2� f (x) � limx→2� f (x) � f (2) � �4, making f continuous at 2 by 
definition.

55. (a) The zeros of f (x) � �
x3 �

x2
2
�
x2

3
� 1

� are the same as the zeros of the
polynomial x3 � 2x2 � 1. By inspection, one such zero is x � 1. 
Divide x3 � 2x2 � 1 by x � 1 to get x2 � x2 � 1, which has zeros �

1 �

2
�5	
�

by the quadratic formula. Thus, the zeros of f are 1, �
1 �

2
�5	�, and �

1 �
2
�5	�.

lim
x→�

f (x) � �� and lim
x→�

�
g
f (
(
x
x
)
)� � lim

x→�
�
x3 �

x3
2
�
x2

3
�
x

1
� � l.

All real numbers except 3 or �3.
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