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Chapter

NASA’s Mars Pathfinder collected and trans-

mitted scientific data and photographs

back to Earth.

How much work must be done against gravity

for the 2000-pound Pathfinder to escape Earth’s

gravity, that is, to be lifted an infinite distance

above the surface of Earth? Assume that the 

force due to gravity on an object of weight w, r
miles from the center of Earth is:

F � 16,000,000 w/(r 2) (r � 4000) (in pounds).

The radius of Earth is approximately 4000

miles. The concepts in Section 8.4 will help you

solve this problem.

Sequences,
L’Hôpital’s Rule,
and Improper 
Integrals

8
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Chapter 8 Overview

In the late seventeenth century, John Bernoulli discovered a rule for calculating limits of
fractions whose numerators and denominators both approach zero. The rule is known
today as l’Hôpital’s Rule, after Guillaume François Antoine de l’Hôpital (1661–1704),
Marquis de St. Mesme, a French nobleman who wrote the first differential calculus text,
where the rule first appeared in print. We will also use l’Hôpital’s Rule to compare the
rates at which functions of x grow as �x � becomes large.

In Chapter 5 we saw how to evaluate definite integrals of continuous functions and
bounded functions with a finite number of discontinuities on finite closed intervals. These
ideas are extended to integrals where one or both limits of integration are infinite, and to
integrals whose integrands become unbounded on the interval of integration. Sequences
are introduced in preparation for the study of infinite series in Chapter 9.

Sequences

Defining a Sequence
We have seen sequences before, such as sequences x0, x1, … , xn, … of numerical approxi-
mations generated by Newton’s method in Chapter 4. A sequence {an} is a list of numbers
written in an explicit order. For example, in the sequence

{an} � {a1, a2, a3, … , an, …},

a1 is the first term, a2 is the second term, a3 is the third term, and so forth. The numbers 
a1, a2, a3, … , an, … are the terms of the sequence and an is the nth term of the sequence.
We may also think of the sequence {a1, a2, a3, … , an, …} as a function with domain the
set of positive integers and range {a1, a2, a3, … , an, …}.

Any real-valued function with domain a subset of the set of positive integers is consid-
ered a sequence. If the domain is finite, then the sequence is a finite sequence. Generally
we will concentrate on infinite sequences, that is, sequences with domains that are infinite
subsets of the positive integers.

EXAMPLE 1 Defining a Sequence Explicitly

Find the first six terms and the 100th term of the sequence {an} where 

an � �
n
(�
2 �

1)n

1
�.

SOLUTION

Set n equal to 1, 2, 3, 4, 5, 6, and we obtain

a1 � �
1
(�
2 �

1)1

1
� � ��

1
2

�, a2 � �
2
(�
2 �

1)2

1
� � �

1
5

�, a3 � ��
1
1
0
�, a4 � �

1
1
7
�, a5 � ��

2
1
6
�, a6 � �

3
1
7
�.

For n � 100 we find

a100 � �
1002

1
� 1
� � �

10
1
001
�.

Now try Exercise 1.

The sequence of Example 1 is defined explicitly because the formula for an is defined
in terms of n. Another way to define a sequence is recursively by giving a formula for an

relating it to previous terms, as shown in Example 2.

8.1

What you’ll learn about

• Defining a Sequence

• Arithmetic and Geometric 
Sequences

• Graphing a Sequence

• Limit of a Sequence

. . . and why 

Sequences arise frequently in
mathematics and applied fields.
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436 Chapter 8 Sequences, L’Hôpital’s Rule, and Improper Integrals

EXAMPLE 2 Defining a Sequence Recursively

Find the first four terms and the eighth term for the sequence defined recursively by the 
conditions:

b1 � 4

bn � bn�1 � 2 for all n � 2.

SOLUTION

We proceed one term at a time, starting with b1 � 4 and obtaining each succeeding
term by adding 2 to the term just before it:

b1 � 4

b2 � b1 � 2 � 6

b3 � b2 � 2 � 8

b4 � b3 � 2 � 10

and so forth.

Continuing in this way we arrive at b8 � 18. Now try Exercise 5.

Arithmetic and Geometric Sequences
There are a variety of rules by which we can construct sequences, but two particular types
of sequence are dominant in mathematical applications: those in which pairs of successive
terms all have a common difference (arithmetic sequences), and those in which pairs of
successive terms all have a common quotient, or common ratio (geometric sequences).

EXAMPLE 3 Defining Arithmetic Sequences

For each of the following arithmetic sequences, find (a) the common difference,
(b) the ninth term, (c) a recursive rule for the nth term, and (d) an explicit rule for 
the nth term.

Sequence 1: �5, �2, 1, 4, 7, … Sequence 2: ln 2, ln 6, ln 18, ln 54, …

SOLUTION

Sequence 1

(a) The difference between successive terms is 3.

(b) a9 � �5 � (9 � 1)(3) � 19

(c) The sequence is defined recursively by a1 � �5 and an � an�1 � 3 for all n � 2.

(d) The sequence is defined explicitly by an � � 5 � (n � 1)(3) � 3n � 8.

Sequence 2

(a) The difference between the first two terms is ln 6 � ln 2 � ln (6�2) � ln 3. You can
check that ln18 � ln6 � ln54 � ln18 are also equal to ln3.

continued

DEFINITION Arithmetic Sequence

A sequence {an} is an arithmetic sequence if it can be written in the form

{a, a � d, a � 2d, … , a � (n � 1)d, …}

for some constant d. The number d is the common difference.

Each term in an arithmetic sequence can be obtained recursively from its preceding
term by adding d:

an � an�1 � d for all n � 2.
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Section 8.1 Sequences 437

(b) a9 � ln 2 � (9 � 1)(ln 3) � ln 2 � 8 ln 3 � ln (2 • 38) � ln 13,122

(c) The sequence is defined recursively by a1 � ln 2 and an � an�1 � ln 3 for all n � 2.

(d) The sequence is defined explicitly by an � ln 2 � (n � 1)(ln 3) � ln (2 • 3n�1).
Now try Exercise 13.

EXAMPLE 4 Defining Geometric Sequences

For each of the following geometric sequences, find (a) the common ratio, (b) the tenth
term, (c) a recursive rule for the nth term, and (d) an explicit rule for the nth term.

Sequence 1: 1, �2, 4, �8, 16, … Sequence 2: 10�2, 10�1, 1, 10, 102, …

SOLUTION

Sequence 1

(a) The ratio between successive terms is �2.

(b) a10 � (1) � (�2)9 � �512

(c) The sequence is defined recursively by a1 � 1 and an � (�2)an�1 for n � 2.

(d) The sequence is defined explicitly by an � (1) � (�2)n�1 � (�2)n�1.

Sequence 2

(a) The ratio between successive terms is 10.

(b) a10 � (10�2) � (109) � 107

(c) The sequence is defined recursively by a1 � 10�2 and an � (10)an�1 for n � 2.

(d) The sequence is defined explicitly by an � (10�2) � (10n�1) � 10n�3.
Now try Exercise 17.

EXAMPLE 5 Constructing a Sequence

The second and fifth terms of a geometric sequence are 6 and �48, respectively. Find
the first term, common ratio, and an explicit rule for the nth term.

SOLUTION

Because the sequence is geometric the second term is a1 • r and the fifth term is a1 • r4,
where a1 is the first term and r is the common ratio. Dividing, we have

�
a
a
1

1

•

•

r
r

4

� � ��
4
6
8
�

r3 � �8

r � �2.
continued

DEFINITION Geometric Sequence

A sequence {an} is an geometric sequence if it can be written in the form

{a, a • r, a • r2, … , a • rn�1, …}

for some nonzero constant r. The number r is the common ratio.

Each term in a geometric sequence can be obtained recursively from its preceding
term by multiplying by r:

an � an�1 • r for all n � 2.
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438 Chapter 8 Sequences, L’Hôpital’s Rule, and Improper Integrals

Then a1 • r � 6 implies that a1 � �3. The sequence is defined explicitly by 

an � (�3)(�2)n�1 � (�1)n(3)(2n�1).
Now try Exercise 21.

Graphing a Sequence
As with other kinds of functions, it helps to represent a sequence geometrically with its
graph. One way to produce a graph of a sequence on a graphing calculator is to use para-
metric mode, as shown in Example 6.

EXAMPLE 6 Graphing a Sequence Using Parametric Mode

Draw a graph of the sequence {an} with an � (�1)n �
n �

n
1

�, n � 1, 2, … .

SOLUTION

Let X1T � T, Y1T � (�1)T �
T �

T
1

�, and graph in dot mode. Set Tmin � 1, Tmax � 20,

and Tstep � 1. Even through the domain of the sequence is all positive integers, we are
required to choose a value for Tmax to use parametric graphing mode. Finally, we choose
Xmin � 0, Xmax � 20, Xscl � 2, Ymin � �2, Ymax � 2, Yscl � 1, and draw the graph
(Figure 8.1). Now try Exercise 23.

Some graphing calculators have a built-in sequence graphing mode that makes it easy
to graph sequences defined recursively. The function names used in this mode are u, v, and
w. We will use this procedure to graph the sequence of Example 7.

EXAMPLE 7 Graphing a Sequence Using Sequence Graphing Mode

Graph the sequence defined recursively by

b1 � 4

bn � bn�1 � 2 for all n � 2.

SOLUTION

We set the calculator in Sequence graphing mode and dot mode (Figure 8.2a). Replace bn

by u(n). Then select nMin � 1, u(n) � u(n � 1) � 2, and u(nMin) � {4} (Figure 8.2b).

Then set nMin � 1, nMax � 10, PlotStart � 1, PlotStep � 1, and graph in the [0, 10] by 
[�5, 25] viewing window (Figure 8.3). We have also activated Trace in Figure 8.3.

Now try Exercise 27.

[0, 20] by [–2, 2]

Figure 8.1 The sequence of Example 6.

Normal
Float
Radian

Sequential
Real
Full

Seq
Dot

Sci     Eng
0123456789
Degree

Func    Par    Pol
Connected

Simul
a+bi re^�i
Horiz G–T

(a) (b)

nMin=1
u(n)=u(n–1)+2
u(nMin)=  4}
v(n)=
v(nMin)=
w(n)=
w(nMin)=

Plot1 Plot2 Plot3

u=u(n–1)+2

n=1
X=1 Y=4

[0, 10] by [–5, 25] Figure 8.2 (a) Setting sequence mode and dot mode on the calculator, and (b) entering
the sequence of Example 7 in the calculator.

Figure 8.3 The graph of the sequence 
of Example 7. The TRACE feature shows 
the coordinates of the first point (1, 4) of
the sequence,

b1 � 4, bn � bn�1 � 2, n � 2.
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Limit of a Sequence
The sequence {1, 2, 3, … , n, …} of positive integers has no limit. As with functions, we
can use a grapher to suggest what a limiting value may be, and then we can confirm the
limit analytically with theorems based on a formal definition as we did in Chapter 2.

THEOREM 1 Properties of Limits

If L and M are real numbers and lim
n→	

an � L and lim
n→	

bn � M, then

1. Sum Rule: 2. Difference Rule:
lim
n→	

(an � bn) � L � M lim
n→	

(an � bn) � L � M

3. Product Rule: 4. Constant Multiple Rule:
lim
n→	

(anbn) � L � M lim
n→	

(c � an) � c � L

5. Quotient Rule:

lim
n→	

�
a
b

n

n
� � �

M
L

�, M 
 0

Just as in Chapter 2, there are important properties of limits that help us compute limits
of sequences.

EXAMPLE 8 Finding the Limit of a Sequence

Determine whether the sequence converges or diverges. If it converges, find its limit.

an � �
2n

n
� 1
�

SOLUTION

It appears from the graph of the sequence in Figure 8.4 that the limit exists.
Analytically, using Properties of Limits we have

lim
n→	

�
2n

n
� 1
� � lim

n→	 �2 � �
1
n

��
� lim

n→	
(2) � lim

n→	 ��
1
n

��
� 2 � 0 � 2.

The sequence converges and its limit is 2. Now try Exercise 31.

[0, 20] by [–1, 3]

Figure 8.4 The graph of the sequence in
Example 8.

DEFINITION Limit

Let L be a real number. The sequence {an} has limit L as n approaches � if, given
any positive number e, there is a positive number M such that for all n � M we have

�an � L � � e.

We write lim
n→	

an � L and say that the sequence converges to L. Sequences that do

not have limits diverge.
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440 Chapter 8 Sequences, L’Hôpital’s Rule, and Improper Integrals

EXAMPLE 9 Determining Convergence or Divergence

Determine whether the sequence with given nth term converges or diverges. If it con-
verges, find its limit.

(a) an � (�1)n �
n �

n
1

�, n � 1, 2, … (b) b1 � 4, bn � bn�1 � 2 for all n � 2

SOLUTION

(a) This is the sequence of Example 6 with graph shown in Figure 8.1. This sequence
diverges. In fact we can see that the terms with n even approach 1 while the terms with
n odd approach �1.

(b) This is the sequence of Example 7 with graph shown in Figure 8.3. This sequence
also diverges. In fact we can say that lim

n→	
bn � 	. Now try Exercise 35.

An important theorem that can be rewritten for sequences is the Sandwich Theorem
from Chapter 2.

EXAMPLE 10 Using the Sandwich Theorem

Show that the sequence ��co
n
s n
�� converges, and find its limit.

SOLUTION

Because �cos x �  1 for all x, it follows that

� �  

for all integers n � 1. Thus,

�   .

Then, lim
n→	

�
co

n
s n
� � 0 because lim

n→	 ���
1
n

�� � lim
n→	 ��

1
n

�� � 0 and the sequence 

��co
n
s n
�� converges. Now try Exercise 41.

We can use the Sandwich Theorem to prove the following theorem.

1
�
n

cos n
�

n
1
�
n

1
�
n

�cos n�
�

�n�

cos n
�

n

THEOREM 2 The Sandwich Theorem for Sequences

If lim
n→	

an � lim
n→	

cn � L and if there is an integer N for which an  bn  cn for all 

n � N, then lim
n→	

bn � L.

THEOREM 3 Absolute Value Theorem

Consider the sequence {an}. If lim
n→	

�an� � 0, then lim
n→	

an � 0.

Proof We know that ��an�  an  �an�. Thus, lim
n→	

�an� � 0 and lim
n→	

� �an� � 0 implies 

that lim
n→	

an � 0 because of the Sandwich Theorem. ■

Another way to state the Absolute Value Theorem is that if the absolute value sequence
converges to 0, then the original sequence also converges to 0.
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In Exercises 1 and 2, let  f (x) � �
x �

x
3

�. Find the values of f.

1. f (5) 5�8 2. f (�2) �2

In Exercises 3 and 4, evaluate the expression a � (n � 1)d for the
given values of a, n, and d.

3. a � �2, n � 3, d � 1.5 1

4. a � �7, n � 5, d � 3 5

Quick Review 8.1 (For help, go to Sections 1.2, 2.1, and 2.2.)

In Exercises 5 and 6, evaluate the expression arn�1 for the given
values of a, r, and n.

5. a � 1.5, r � 2, n � 4 12 6. a � �2, r � 1.5, n � 3 –4.5

In Exercises 7–10, find the value of the limit.

7. lim
x→	

�
3
5
x
x
4

3

�

�

1
2
6
x
x

2

2� 0 8. lim
x→0

�
sin

x
(3x)
� 3

9. lim
x→	 �x sin��

1
x

��� 1 10. lim
x→	

�
2x

x

3

�

�

1
x2

�

Section 8.1 Exercises

In Exercises 1–4, find the first six terms and the 50th term of the
sequence with specified nth term.

1. an � �
n �

n
1

� See page 443. 2. bn � 3 � �
1
n

� See page 443.

3. cn � �1 � �
1
n

��
n

See page 443. 4. dn � n2 � 3n

In Exercises 5–10, find the first four terms and the eighth term of the
recursively defined sequence.

5. a1 � 3, an � an�1 � 2 for all n � 2 3, 1, �1, �3; �11

6. b1 � �2, bn � bn�1 � 1 for all n � 2 �2, �1, 0, 1; 5

7. c1 � 2, cn � 2cn�1 for all n � 2 2, 4, 8, 16; 256

8. d1 � 10, dn � 1.1dn�1 for all n � 2

9. u1 � 1, u2 � 1, un � un�1 � un�2 for all n � 3

10. v1 � �3, v2 � 2, vn � vn�1 � vn�2 for all n � 3 �3, 2, �1, 1; 2

In Exercises 11–14, the sequences are arithmetic. Find

(a) the common difference,

(b) the eighth term,

(c) a recursive rule for the nth term, and

(d) an explicit rule for the nth term.

11. �2, 1, 4, 7, … See page 443. 12. 15, 13, 11, 9, … See page 443.

13. 1, 3�2, 2, 5�2, … See page 443. 14. 3, 3.1, 3.2, 3.3, …

In Exercises 15–18, the sequences are geometric. Find

(a) the common ratio,

(b) the ninth term,

(c) a recursive rule for the nth term, and

(d) an explicit rule for the nth term.

15. 8, 4, 2, 1, … See page 443. 16. 1, 1.5, 2.25, 3.375, …
17. �3, 9, �27, 81, … 18. 5, �5, 5, �5, …
19. The second and fifth terms of an arithmetic sequence are �2 

and 7, respectively. Find the first term and a recursive rule for
the nth term. –5, an � an�1 � 3 for all n � 2

20. The fifth and ninth terms of an arithmetic sequence are 5 and
�3, respectively. Find the first term and an explicit rule for the
nth term. 13, an � �2n � 15, n � 1

21. The fourth and seventh terms of a geometric sequence are 3010
and 3,010,000, respectively. Find the first term, common ratio,
and an explicit rule for the nth term. a1 � 3.01, r = 10,

22. The second and seventh terms of a geometric sequence are �1�2
and 16, respectively. Find the first term, common ratio, and an
explicit rule for the nth term. a1 � 1�4, r = –2,

In Exercises 23–30, draw a graph of the sequence {an}.

23. an � �
n2

n
� 1
�, n � 1, 2, 3, …

24. an � �
n
n

�

�

2
2

�, n � 1, 2, 3, …

25. an � (�1)n �
2n

n
� 1
�, n � 1, 2, 3, …

26. an � �1 � �
2
n

��
n
, n � 1, 2, 3, …

27. u1 � 2, un � 3un�1 for all n � 2

28. u1 � 2, un � un�1 � 3 for all n � 2

29. u1 � 3, un � 5 � �
1
2

�un�1 for all n � 2

30. u1 � 5, un � un�1 � 2 for all n � 2

In Exercises 31–40, determine the convergence or divergence of the
sequence with given nth term. If the sequence converges, find its limit.

31. an � �
3n

n
� 1
� converges, 3 32. an � �

n
2
�

n
3

� converges, 2

33. an � �
2
5
n
n

2

2
�

�

n
n

�

�

1
2

� 34. an � �
n2

n
� 1
� converges, 0

35. an � (�1)n �
n
n

�

�

1
3

� diverges 36. an � (�1)n �
n
n
2
�

�

1
2

�

37. an � (1.1)n diverges 38. an � (0.9)n converges, 0

39. an � n sin ��
1
n

�� converges, 1 40. an � cos �n�
�

2
�� diverges

In Exercises 41–44, use the Sandwich Theorem to show that the
sequence with given nth term converges and find its limit.

41. an � �
sin

n
n

� 0 42. an � �
2
1
n�

43. an � �
n
1
!
� 44. an � �

sin
2

2

n

n
� 0

Does not exist, or 	

�2, �2, 0, 4, 10, 18; 2350

10, 11, 12.1, 13.31; 19.487171 � 10(1.1)7

1, 1, 2, 3; 21

See page 443.

See page 443.

See page 443.
See 
page 443.

an � 3.01(10)n�1, n � 1

an � (�1)n�1(2)n�3, n � 1

converges, 2�5
converges, 0

0 (Note: �
2
1
n� � �

1
n

� for n �1)

0, (Note: �
n
1
!
�  �

1
n

� for n � 1)
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In Exercises 45–48, match the graph or table with the sequence with
given nth term.

45. an � �
2n

n
� 1
� Graph (b) 46. bn � (�1)n �

3
n
n
�

�

3
1

� Graph (c)

47. cn � �
n �

n
1

� Table (d) 48. dn � �
n �

4
2

� Table (a)

(d)

n u(n)
2
1.5
1.3333
1.25
1.2
1.1667
1.1429

n = 1

1
2
3
4
5
6
7

[0, 20] by [–5, 5]

(c)

[0, 20] by [–1, 3]

(b)

(a)

n u(n)
1.3333
1
.8
.66667
.57143
.5
.44444

n = 1

1
2
3
4
5
6
7

Standardized Test Questions
You should solve the following problems without using 
a graphing calculator.

49. True or False If the first two terms of an arithmetic sequence
are negative, then all its terms are negative. Justify your answer.

50. True or False If the first two terms of a geometric sequence
are positive, then all its terms are positive. Justify your answer.

51. Multiple Choice The first and third terms of an arithmetic
sequence are �1 and 5, respectively. Which of the following is
the sixth term? C

(A) �25 (B) 11 (C) 14 (D) 29 (E) 3125

52. Multiple Choice The second and third terms of a geometric
sequence are 2.5 and 1.25, respectively. Which of the following
is the first term? E

(A) �5 (B) �2.5 (C) 0.625 (D) 3.75 (E) 5

53. Multiple Choice Which of the following is the limit of the 

sequence with nth term an � n sin ��
3
n
p
��? D

(A) 1 (B) p (C) 2p (D) 3p (E) 4p

54. Multiple Choice Which of the following is the limit of the 

sequence with nth term an � (�1)n �
3
n
n
�

�

2
1

�? E

(A) �3 (B) 0 (C) 2 (D) 3 (E) diverges

Explorations
55. Connecting Geometry and Sequences In the sequence of

diagrams that follow, regular polygons are inscribed in unit circles
with at least one side of each polygon perpendicular to the x-axis.

(a) Prove that the perimeter of each polygon in the sequence is
given by an � 2n sin (p�n), where n is the number of sides in
the polygon.

(b) Determine lim
n→	

an. 2p

y

x
1

(d)

y

x
1

(c)

y

x
1

(b)

y

x
1

(a)

49. False. Consider the sequence with nth term an � �5 � 2(n � 1). 
Here a1 � �5, a2 � �3, a3 � �1, and a4 � 1.

50. True. a1 � 0, r � a2�a1 � 0, and an � a1rn�1 � 0 for all n � 2.
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56. Fibonacci Sequence The Fibonacci Sequence can be
defined recursively by a1 � 1, a2 � 1, and an � an�2 � an�1 for
all integers n � 3.

(a) Write out the first 10 terms of the sequence.

(b) Draw a graph of the sequence using the Sequence Graphing
mode on your grapher. Enter u(n) � u(n � 1) � u(n � 2) and
u(nMin) � {1, 1}.

Extending the Ideas
57. Writing to Learn If {an} is a geometric sequence with all

positive terms, explain why {log an} must be arithmetic.

58. Writing to Learn If {an} is an arithmetic sequence, explain
why {10an} must be geometric.

59. Proving Limits Use the formal definition of limit to prove that

lim
n→	

�
1
n

� � 0.

1. 1�2, 2�3, 3�4, 4�5, 5�6, 6�7; 50�51
2. 2, 5�2, 8�3, 11�4, 14�5, 17�6; 149/50
3. 2, 9�4, 64�27, 625�256, 7776�3125 � 2.48832,

117649�46656 � 2.521626; (51�50)50 � 2.691588

11. (a) 3 (b) 19
(c) an � an�1 � 3 (d) an � 3n � 5

12. (a) –2 (b) 1
(c) an � an�1 � 2 (d) an � �2n � 17

13. (a) 1/2 (b) 9�2
(c) an � an�1 � 1�2 (d) an � (n � 1)�2

14. (a) 0.1 (b) 3.7
(c) an � an�1 � 0.1 (d) an � 0.1n � 2.9

15. (a) 1�2 (b) 8(1�2)8 � 0.03125
(c) an � (1�2)an�1 (d) an � 8(1�2)n�1 � 24�n

16. (a) 1.5 (b) (1)(1.5)8 � 25.6289
(c) an � (1.5)an�1 (d) an � (1)(1.5)n�1 � (1.5)n�1

17. (a) –3 (b) (�3)9 � �19,683
(c) an � (�3)an�1 (d) an � (�3)(�3)n�1 � (�3)n

18. (a) –1 (b) (5)(�1)8 � 5
(c) an � � an�1 (d) an � 5(�1)n�1

1, 1, 2, 3, 5, 8, 13, 21, 34, 55

57. an � arn�1 implies that log an � log a � (n � 1) log r. Thus {log an} is
an arithmetic sequence with first term log a and common ratio log r.

58. an � a � (n � 1)d implies that 10an � 10a�(n�1)d � 10a(10d)n�1. Thus
{10an} is a geometric sequence with first term 10a and common ratio 10d.

59. Given e � 0 choose M � 1�e. Then ��
1
n

� � 0� � e if n � M.
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L’Hôpital’s Rule

Indeterminate Form 0�0
If functions f 	x
 and g	x
 are both zero at x � a, then 

lim
x→a

�
g
f 	

	
x
x





�

cannot be found by substituting x � a. The substitution produces 0�0, a meaningless expres-
sion known as an indeterminate form. Our experience so far has been that limits that lead
to indeterminate forms may or may not be hard to find algebraically. It took a lot of analysis
in Exercise 75 of Section 2.1 to find limx→0 	sin x
�x. But we have had remarkable success
with the limit

f �	a
 � lim
x→a

�
f 	x

x



�

�

a
f 	a


� ,

from which we calculate derivatives and which always produces the equivalent of 0�0.
L’Hôpital’s Rule enables us to draw on our success with derivatives to evaluate limits that
otherwise lead to indeterminate forms.

8.2

What you’ll learn about

• Indeterminate Form 0�0

• Indeterminate Forms 
	�	, 	 • 0, 	 � 	

• Indeterminate Forms 1	, 00, 	0

. . . and why 

Limits can be used to describe
the behavior of functions and
l’Hôpital’s Rule is an important
technique for finding limits.

THEOREM 4 L’Hôpital’s Rule (First Form)

Suppose that f 	a
 � g	a
 � 0, that f �	a
 and g�	a
 exist, and that  g�	a
 
 0. 
Then

lim
x→a

�
g
f 	

	
x
x





� � �
g
f �

�

	
	
a
a





� .

Proof  

Graphical Argument

If we zoom in on the graphs of f and g at 	a, f 	a

 � 	a, g	a

 � 	a, 0
, the graphs (Figure 8.5)
appear to be straight lines because differentiable functions are locally linear. Let m1 and m2 be
the slopes of the lines for f and g, respectively. Then for x near a,

�
g
f 	

	
x
x





� � � �
m
m1

2
� .

As x→a, m1 and m2 approach f �	a
 and g�	a
, respectively. Therefore,

lim
x→a

�
g
f 	

	
x
x





� � lim
x→a

�
m
m1

2
� � �

g
f �

�

	
	
a
a





� .

Confirm Analytically

Working backward from f �	a
 and g�	a
, which are themselves limits, we have

�
g
f �

�

	
	
a
a





� � � lim
x→a

� lim
x→a

�
g
f 	
	
x
x





�

�

f
g
	
	
a
a





� � lim
x→a

�
g
f 	

	
x
x





�

�

0
0

� � lim
x→a

�
g
f 	

	
x
x





� . ■

�
f 	x

x



�

�

a
f 	a


�
��

�
g	x

x



�

�

a
g	a


�

lim
x→a

�
f 	x

x



�

�

a
f 	a


�
���

lim
x→a

�
g	x

x



�

�

a
g	a


�

�
x
f
�

	x

a

�
�

�
x
g
�

	x

a

�
Bernard A. Harris Jr.

(1956–1969)

Bernard Harris, M.D.,

became an astronaut

in 1991. In 1995, as the 

Payload Commander

on the STS-63 mission,

he became the first

African American to

walk in space. During 

this mission, which included a ren-

dezvous with the Russian Space Station,

Mir, Harris traveled over 2.9 million

miles. Dr. Harris left NASA in 1996 to

become Vice President of Microgravity

and Life Sciences for SPACEHAB 

Incorporated.

rise = g(x)

x
run = x– a

rise = f(x)

(x, f (x))

(x, g(x))

a
x

Figure 8.5 A zoom-in view of the graphs
of the differentiable functions f and g at
x � a. (Theorem 4)
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EXAMPLE 1 Indeterminate Form 0�0

Estimate the limit graphically and then use l’Hôpital’s Rule to find the limit.

lim
x→0

�
�1 �

x
x� � 1
�

SOLUTION

From the graph in Figure 8.6 we can estimate the limit to be about 1/2. If we set 
f (x) � �1 � x� � 1 and g(x) � x we have f (0) � g(0) � 0. Thus, l’Hôpital’s Rule
applies in this case. Because f�(x) � (1�2)(1 � x)�1�2 and g�(x) � 1 it follows that

lim
x→0 

�
�1 �

x
x� � 1
� � lim

x→0 
�
(1�2)(1

1
� x)�1�2

�� �
1
2

�.

Now try Exercise 3.

Sometimes after differentiation the new numerator and denominator both equal zero at
x � a, as we will see in Example 2. In these cases we apply a stronger form of l’Hôpital’s
Rule.

THEOREM 5 L’Hôpital’s Rule (Stronger Form)

Suppose that f 	a
 � g	a
 � 0, that f and g are differentiable on an open interval I
containing a, and that  g�	x
 
 0 on I if  x 
 a. Then

lim
x→a

�
g
f 	

	
x
x





� � lim
x→a

�
g
f �

�

	
	
x
x





� ,

if the latter limit exists.

Figure 8.6 The graph of 

y � �
�1 �

x
x� � 1
�. (Example 1)

[–2, 5] by [–1, 2]

When you apply l’Hôpital’s Rule, look for a change from 0�0 into something else. 
This is where the limit is revealed.

EXAMPLE 2 Applying a Stronger Form of l’Hôpital’s Rule

Evaluate lim
x→0

.

SOLUTION

Substituting x � 0 leads to the indeterminate form 0/0 because the numerator and denom-
inator of the fraction are 0 when 0 is substituted for x. So we apply l’Hôpital’s Rule.

lim
x→0

� lim
x→0

Substituting 0 for x leads to 0 in both the numerator and denominator of the second
fraction, so we differentiate again.

lim
x→0

� lim
x→0

� lim
x→0

The third limit in the above line is �1�8. Thus,

lim
x→0

� � �
1
8

�.

Now try Exercise 5.

�1� �� x� � 1 � x�2
���

x2

�(1�4)(1 � x)�3�2
��

2

	1�2
	1 � x
�1�2 � 1�2
���

2x
�1� �� x� � 1 � x�2
���

x2

Differentiate numerator

and denominator.

	1�2
	1 � x
�1�2 � 1�2
���

2x
�1� �� x� � 1 � x�2
���

x2

�1� �� x� � 1 � x�2
���

x2

Augustin-Louis Cauchy
(1789–1857)

An engineer with a

genius for mathematics

and mathematical mod-

eling, Cauchy created

an early modeling of

surface wave propaga-

tion that is now a clas-

sic in hydrodynamics.

Cauchy (pronounced “CO-she”) invented

our notion of continuity and proved the

Intermediate Value Theorem for continu-

ous functions. He invented modern limit

notation and was the first to prove the

convergence of (1 � 1�n)n. His mean

value theorem, the subject of Exercise 71,

is the key to proving the stronger form of

l’Hôpital’s Rule. His work advanced not

only calculus and mathematical analysis,

but also the fields of complex function

theory, error theory, differential equa-

tions, and celestial mechanics.
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L’Hôpital’s Rule applies to one-sided limits as well.

EXAMPLE 3 Using L’Hôpital’s Rule with One-Sided Limits

Evaluate the following limits using l’Hôpital’s Rule:

(a) lim
x→0�

�
si

x
n

2
x

� (b) lim
x→0�

�
si

x
n

2
x

�

Support your answer graphically.

SOLUTION

(a) Substituting x � 0 leads to the indeterminate form 0/0. Apply l’Hôpital’s Rule by dif-
ferentiating numerator and denominator.

lim
x→0�

�
si

x
n

2
x

� � lim
x→0�

�
co

2
s
x

x
� �

0

1
�

� 	

(b) lim
x→0�

�
si

x
n

2
x

� � lim
x→0�

�
co

2
s
x

x
� ��

0

1
�

� �	

Figure 8.7 supports the results. Now try Exercise 11.

When we reach a point where one of the derivatives approaches 0, as in Example 3, and
the other does not, then the limit in question is 0 (if the numerator approaches 0) or
� infinity (if the denominator approaches 0).

Indeterminate Forms ���, � • 0, � � �
A version of l’Hôpital’s Rule also applies to quotients that lead to the indeterminate form
	�	. If f 	x
 and g	x
 both approach infinity as x→a, then

lim
x→a

�
g
f 	

	
x
x





� � lim
x→a

�
g
f �

�

	
	
x
x





� ,

provided the latter limit exists. The a here (and in the indeterminate form 0�0) may itself
be finite or infinite, and may be an endpoint of the interval I of Theorem 5.

EXAMPLE 4 Working with Indeterminate Form ���
Identify the indeterminate form and evaluate the limit using l’Hôpital’s Rule. Support
your answer graphically.

lim
x→p�2

�
1 �

sec
ta

x
n x

�
continued

Exploring L’Hôpital’s Rule Graphically

Consider the function f 	x
 � �
sin

x
x

� .

1. Use l’Hôpital’s Rule to find  limx→0 f 	x
.
2. Let  y1 � sin x, y2 � x, y3 � y1�y2, y4 � y1��y2�.  Explain how graphing y3 and

y4 in the same viewing window provides support for l’Hôpital’s Rule in part 1.

3. Let  y5 � y3�.  Graph y3, y4, and y5 in the same viewing window. Based on what
you see in the viewing window, make a statement about what l’Hôpital’s Rule
does not say.

EXPLORATION 1

[–1, 1] by [–20, 20]

Figure 8.7 The graph of
f 	x
 � 	sin x
�x2. (Example 3)
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SOLUTION

The numerator and denominator are discontinuous at x � p/2, so we investigate the
one-sided limits there. To apply l’Hôpital’s Rule we can choose I to be any open inter-
val containing x � p/2.

lim
x→	p�2
�

�
1 �

sec
ta

x
n x

� �
	

	
� from the left

Next differentiate the numerator and denominator.

lim
x→	p�2
�

�
1 �

sec
ta

x
n x

� � lim
x→	p�2
�

�
sec

se
x
c2

ta
x
n x

� � lim
x→	p�2
�

sin x � 1

The right-hand limit is 1 also, with (�	)�(�	) as the indeterminate form. Therefore,
the two-sided limit is equal to 1. The graph of (sec x)�(1 � tan x) in Figure 8.8 appears
to pass right through the point (p�2, 1) and supports the work above.

Now try Exercise 13.

EXAMPLE 5 Working with Indeterminate Form ���
Identify the indeterminate form and evaluate the limit using l’Hôpital’s Rule. Support
your answer graphically.

lim
x→	

�
2

l

�

n x

x�
�

SOLUTION 

lim
x→	

�
2

l

�

n x

x�
� � lim

x→	
� lim

x→	
�
�

1

x�
� � 0

The graph in Figure 8.9 supports the result. Now try Exercise 15.

We can sometimes handle the indeterminate forms 	 • 0 and 	 � 	 by using algebra to
get 0�0 or 	�	 instead. Here again we do not mean to suggest that there is a number 	 • 0
or 	 � 	 any more than we mean to suggest that there is a number 0�0 or 	�	. These
forms are not numbers but descriptions of function behavior.

EXAMPLE 6 Working With Indeterminate Form � • 0

Find (a) lim
x→	 (x sin �

1
x

� ) (b) lim
x→�	 (x sin �

1
x

� ).

SOLUTION

Figure 8.10 suggests that the limits exist.

(a) lim
x→	 (x sin �

1
x

� ) 	 • 0

� lim
h→0� ( �

1
h

� sin h) Let h � 1�x.

� 1

(b) Similarly,

lim
x→�	 (x sin �

1
x

� ) � 1.
Now try Exercise 17.

1�x
�
1��x�

Figure 8.9 A graph of 
y � (ln x)�(2�x�). (Example 5)

[�/4, 3�/4] by [–2, 4]

[0, 1000] by [–2, 2]

Figure 8.8 The graph of 
y � 	sec x
�	1 � tan x
. (Example 4)

[–5, 5] by [–1, 2]

Figure 8.10 The graph of 
y � x sin 	1�x
. (Example 6)

�
	

	
�
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EXAMPLE 7 Working with Indeterminate Form � � �

Find lim
x→1 (�

ln
1

x
� � �

x �

1
1

� ).

SOLUTION

Combining the two fractions converts the indeterminate form 	 � 	 to 0�0, to which
we can apply l’Hôpital’s Rule.

lim
x→1 (�

ln
1

x
� � �

x �

1
1

� ) 	 � 	

� lim
x→1

�
x
	x

�

�

1
1
�


 l
l
n
n

x
x

� Now �
0

0
�

� lim
x→1

� lim
x→1

�
x ln x

x
�

�

x
1

� 1
� Still �

0

0
�

� lim
x→1

�
2 �

1
ln x
�

� �
1
2

�
Now try Exercise 19.

Indeterminate Forms 1�, 00, �0

Limits that lead to the indeterminate forms 1	, 00, and 	0 can sometimes be handled by
taking logarithms first. We use l’Hôpital’s Rule to find the limit of the logarithm and then
exponentiate to reveal the original function’s behavior.

1 � 1�x
��

�
x �

x
1

� � ln x

lim
x→a

ln f 	x
 � L ⇒ lim
x→a

f 	x
 � lim
x→a

e ln f 	x
 � eL

Here a can be finite or infinite.

In Section 1.3 we used graphs and tables to investigate the values of f 	x
 � 	1 � 1�x
x

as x→	. Now we find this limit with l’Hôpital’s Rule.

EXAMPLE 8 Working with Indeterminate Form 1�

Find lim
x→	 (1 � �

1
x

� )x

.

SOLUTION

Let f 	x
 � 	1 � 1�x
x.  Then taking logarithms of both sides converts the indetermi-
nate form 1	 to 0�0, to which we can apply l’Hôpital’s Rule.

ln f 	x
 � ln (1 � �
1
x

� )x

� x ln (1 � �
1
x

� ) �

ln (1 � �
1
x

� )
��

�
1
x

�

Since b � e ln b for every positive num-

ber b, we can write f 	x
 as

f 	x
 � e ln f 	x


for any positive function f 	x
.

continued
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We apply l’Hôpital’s Rule to the previous expression.

lim
x→	

ln f 	x
 � lim
x→	

�
0

0
�

� lim
x→	

� lim
x→	

� 1

Therefore,

lim
x→	 (1 � �

1
x

� )x

� lim
x→	

f 	x
 � lim
x→	

eln f 	x
 � e1 � e.

Now try Exercise 21.

EXAMPLE 9 Working with Indeterminate Form 00

Determine whether  limx→0� xx exists and find its value if it does.

SOLUTION

Investigate Graphically Figure 8.11 suggests that the limit exists and has a value
near 1.

Solve Analytically The limit leads to the indeterminate form 00. To convert the
problem to one involving 0�0, we let f 	x
 � xx and take the logarithm of both sides.

ln f 	x
 � x ln x � �
l
1
n
�x
x

�

Applying l’Hôpital’s Rule to  	ln x
�	1�x
 we obtain

lim
x→0�

ln f 	x
 � lim
x→0�

�
l
1
n
�x
x

� �
�
	
	
�

� lim
x→0�

�
�

1
1
�
�
x
x2� Differentiate.

� lim
x→0�

	�x
 � 0.

Therefore,
lim
x→0�

xx � lim
x→0�

f 	x
 � lim
x→0�

eln f 	x
 � e0 � 1.

Now try Exercise 23.

EXAMPLE 10 Working with Indeterminate Form �0

Find lim
x→	

x1�x.

SOLUTION

Let f 	x
 � x1�x.  Then 
ln f 	x
 � �

ln
x

x
� .

continued

1
�

1 � �
1
x

�

��

� �
x
1
2�

Differentiate numerator
and denominator.

(� �
x
1
2� )1

�

1 � �
1
x

�

ln (1 � �
1
x

� )
��

�
1
x

�

[–3, 3] by [–1, 3]

Figure 8.11 The graph of y � x x.
(Example 9)
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Applying l’Hôpital’s Rule to  ln f 	x
 we obtain

lim
x→	

ln f 	x
 � lim
x→	

�
ln

x
x

� �
	

	
�

� lim
x→	

�
1
1
�x
� Differentiate.

� lim
x→	

�
1
x

� � 0.

Therefore,

lim
x→	

x1�x � lim
x→	

f 	x
 � lim
x→	

eln f 	x
 � e0 � 1.
Now try Exercise 25.

Quick Review 8.2 (For help, go to Sections 2.1 and 2.2.)

In Exercises 1 and 2, use tables to estimate the value of the limit.

1. lim
x→	 (1 � �

0
x
.1
� )

x

1.1052 2. lim
x→0�

x1�	ln x
 2.7183

In Exercises 3–8, use graphs or tables to estimate the value of the
limit.

3. lim
x→0� (1 � �

1
x

� )
x

1 4. lim
x→�1� (1 � �

1
x

� )
x

	

5. lim
t→1

�
�

t

t�
�

�

1

1
� 2 6. lim

x→	
�
�4�

x
x�
�

2���
1

1�
� 2

7. lim
x→0

�
sin

x
3x
� 3 8. lim

u→p�2
�
2 �

tan
ta

u

n u
� 1

In Exercises 9 and 10, substitute  x � 1�h to express y as a function
of h.

9. y � x sin �
1
x

� y � �
sin

h
h

� 10. y � (1 � �
1
x

� )
x

y � (1 � h)1�h

Section 8.2 Exercises

In Exercises 1–4, estimate the limit graphically and then use l’Hôpital’s
Rule to find the limit.

1. lim
x→2

�
x
x
2
�

�

2
4

� 2. lim
x→0

�
sin

x
(5x)
�

3. lim
x→2 

�
�2

x
�

�

x�
2
� 2

� 4. lim
x→1

�
�3

x
x�
�

�

1
1

�

In Exercises 5–8, apply the stronger form of l’Hôpital’s Rule to find
the limit.

5. lim
x→0

�
1 �

x
c
2
os x
� 1�2 6. lim

u→p/2
�
1

1
�

�

co
s
s
in

(2
�

�)
� 1�4

7. lim
t→0

�
e
c
t

o
�

s t
t
�

�

1
1

� –1 8. lim
x→2 

�
x3
x2

�

�

1
4
2
x
x

�

�

4
16

� 1�6

In Exercises 9–12, use l’Hôpital’s Rule to evaluate the one-sided
limits. Support your answer graphically.

9. (a) lim
x→0� 

�
s
s
i
i
n
n

4
2
x
x

� 2 (b) lim
x→0� 

�
s
s
i
i
n
n

4
2
x
x

� 2

10. (a) lim
x→0� 

�
tan

x
x

� 1 (b) lim
x→0� 

�
tan

x
x

� 1

11. (a) lim
x→0� 

�
si

x
n
3
x

� 	 (b) lim
x→0� 

�
si

x
n
3
x

� 	

12. (a) lim
x→0� 

�
ta

x
n
2
x

� �	 (b) lim
x→0�

�
ta

x
n
2
x

� 	

In Exercises 13–16, identify the indeterminate form and evaluate the
limit using l’Hôpital’s Rule. Support your answer graphically.

13. lim
x→p

�
1 �

csc
co

x
t x

� 14. lim
x→p�2

�
1 �

tan
se

x
c x

�

15. lim
x→	

�
ln

l
(
o
x
g
�

2 x
1)

� (	)�(	), limit � ln 2

16. lim
x→	

�
5
7
x
x

2

2
�

�

3
1
x

� (	)�(	), limit � 5�7

In Exercises 17–26, identify the indeterminate form and evaluate the
limit using l’Hôpital’s Rule.

17. lim
x→0�

(x ln x) 	 • 0, 0 18. lim
x→	 �x tan �

1
x

�� 	 • 0, 1

19. lim
x→0�

	csc x � cot x � cos x
 20. lim
x→	

	ln (2x) � ln 	x � 1



21. lim
x→0

	ex � x
1�x 22. lim
x→1

x1�	x�1


23. lim
x→1

	x2 � 2x � 1
 x�1 00, 1 24. lim
x→0�

	sin x
 x 00, 1

25. lim
x→0� (1 � �

1
x

� )
x

	0, 1 26. lim
x→	

	ln x
1�x 	0, 1

In Exercises 27 and 28, (a) complete the table and estimate the limit.
(b) Use l’Hôpital’s Rule to confirm your estimate.

27. lim
x→	

f 	x
, f 	x
 � �
ln

x
x5

�

28. lim
x→0�

f 	x
, f 	x
 � �
x �

x
s
3
in x
�

x | 100 | 10�1 | 10�2 | 10�3 | 10�4

f 	x
 | | | | |

x | 10 | 102 | 103 | 104 | 105

f 	x
 | | | | |

Left (	)�(�	),
right (�	)�(	),
limit � �1

Left (	)�(	),
right (�	)�(�	),
limit � 1

	 � 	, 1 	 � 	, ln 2

1	, e2 1	, e
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In Exercises 29–32, use tables to estimate the limit. Confirm your
estimate using l’Hôpital’s Rule.

29. lim
u→0

�
s
s
i
i
n
n

3
4
u

u
� 3/4 30. lim

t→0 (�
si

1
n t
� � �

1
t
� ) 0

31. lim
x→	

	1 � x
1�x 1 32. lim
x→	

�
3
x
x
�
2 �

2x
5

2

x
� �2/3

In Exercises 33–52, use l’Hôpital’s Rule to evaluate the limit.

33. lim
u→0

�
sin

u

u2

� 0 34. lim
t→1

�
ln t

t
�

�

si
1
n pt

� 1/(p � 1)

35. lim
x→	

�
log

l

3

o
	
g
x
2

�

x
3


� ln 3/ln 2 36. lim
y→0�

�
ln 	y

l

2

n
�

y
2y


� 1

37. lim
y→p�2 ( �

p

2
� � y ) tan y 1 38. lim

x→0�
	ln x � ln sin x
 0

39. lim
x→0� ( �

1
x

� � �
�

1

x�
� ) 	 40. lim

x→0 ( �
x
1
2� )

x

1

41. lim
x→�	

�
2x2

3x
�

�

x
5
� 2

� 0 42. lim
x→0

�
t
s
a
i
n
n

1
7
1
x
x

� 7/11

43. lim
x→	

	1 � 2x
1�	2 ln x
 e1�2 44. lim
x→	p�2
�

	cos x
cos x 1

45. lim
x→0�

	1 � x
1�x e 46. lim
x→0�

	sin x
tan x 1

47. lim
x→1�

x1�	1�x
 e�1 48. lim
x→	

2x

x

�
d
t
t
� ln 2

49. lim
x→1

�
4x3

x
�

3 �

x
1
� 3

� 3�11 50. lim
x→	

�
x
2
3
x
�

2 �

x �

3x
1

� 0

51. lim
x→1

(cos 1)�2 52. lim
x→1

1�3

Group Activity In Exercises 53 and 54, do the following.

(a) Writing to Learn Explain why l’Hôpital’s Rule does not
help you to find the limit.

(b) Use a graph to estimate the limit.

(c) Evaluate the limit analytically using the techniques of
Chapter 2.

53. lim
x→	

�
�
�

9�
x

x

�
�
��
��

1�
1�

� 54. lim
x→p�2

�
s
ta
e
n
c

x
x

�

55. Continuous Extension Find a value of c that makes the
function

�
9x �

5
3
x3

sin 3x
� , x 
 0

f 	x
 � {
c, x � 0

continuous at  x � 0.  Explain why your value of c works.

56. Continuous Extension Let f 	x
 � �x �x, x 
 0.  Show that
f has a removable discontinuity at  x � 0  and extend the definition
of f to  x � 0  so that the extended function is continuous there.

57. Interest Compounded Continuously

(a) Show that  lim
k→	

A0 (1 � �
k
r

� )
kt

� A0ert.

(b) Writing to Learn Explain how the limit in part (a)
connects interest compounded k times per year with interest
compounded continuously.

�
x

1 �
d
t
t
�

�
x3 � 1

�
x

1 cos t dt
��

x2 � 1

58. L’Hôpital’s Rule Let

x � 2, x 
 0 x � 1, x 
 0
f 	x
 � {0, x � 0

and g	x
 � {0, x � 0.

(a) Show that 

lim
x→0

�
g
f �

�

	
	
x
x





� � 1 but lim
x→0

�
g
f 	

	
x
x





� � 2.

(b) Writing to Learn Explain why this does not contradict
l’Hôpital’s Rule.

59. Solid of Revolution Let A	t
 be the area of the region in the
first quadrant enclosed by the coordinate axes, the curve y � e�x,
and the line  x � t � 0 as shown in the figure. Let V	t
 be the
volume of the solid generated by revolving the region about the
x-axis. Find the following limits.

(a) lim
t→	

A	t
 1 (b) lim
t→	

�
V
A	

	
t
t





� p/2 (c) lim
t→0�

�
V
A	

	
t
t





� p

60. L’Hôpital’s Trap Let f 	x
 � �
1

x
�

�

co
x
s
2

x
� .

(a) Use graphs or tables to estimate  limx→0 f 	x
. 0

(b) Find the error in the following incorrect application of
l’Hôpital’s Rule.

lim
x→0

�
1

x
�

�

co
x
s
2

x
� � lim

x→0
�
1
s
�

in
2
x
x

�

� lim
x→0

�
co

2
s x
�

� �
1
2

�

61. Exponential Functions (a) Use the equation

ax � ex ln a

to find the domain of

f 	x
 � (1 � �
1
x

� )
x

.

(b) Find lim
x→�1�

f 	x
. 	

(c) Find lim
x→�	

f 	x
. e

Standardized Test Questions
You should solve the following problems without using 
a graphing calculator.

62. True or False If f (a) � g(a) � 0 and f�(a) and g�(a) exist, then

lim
x→a

�
g
f (
(
x
x
)
)

� � �
g
f�

�

(
(
a
a
)
)

�. Justify your answer.

63. True or False lim
x→0� 

xx does not exist. Justify your answer.

x

y

1

10

y � e–x

2t

L’Hôpital’s Rule cannot 

be applied to �
1
s
�

in
2
x
x

�

because the denominator 
has limit 1.

(�	, �1)�(0, 	)

62. False. Need g�(a) 
 0. Consider f (x) � sin2 x and g(x) � x2 with a � 0. 
Here lim

x→0
f�(x) � lim

x→0 
g�(x) � 0.

False. The limit is 1.
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64. Multiple Choice Which of the following gives the value of C

lim
x→0

�
tan

x
x

�?

(A) �1 (B) 0 (C) 1 (D) p (E) Does not exist

65. Multiple Choice Which of the following gives the value of D

lim
x→1 

?

(A) Does not exist (B) 2 (C) 1 (D) 1�2 (E) 0

66. Multiple Choice Which of the following gives the value of B

lim
x→	

�
l
l
o
o
g
g

2

3

x
x

�?

(A) 1 (B) �
l
l
n
n

3
2

� (C) �
l
l
n
n

2
3

� (D) ln ��
3
2

�� (E) ln ��
2
3

��
67. Multiple Choice Which of the following gives the value of E

lim
x→	 �1 � �

1
x

��
3x

?

(A) 0 (B) 1 (C) e (D) e2 (E) e3

Explorations
68. Give an example of two differentiable functions f and g with

limx→3 f 	x
 � limx→3 g	x
 � 0 that satisfy the following.

(a) lim
x→3

�
g
f 	

	
x
x





� � 7 (b) lim
x→3

�
g
f 	

	
x
x





� � 0

(c) lim
x→3

�
g
f 	

	
x
x





� � 	

69. Give an example of two differentiable functions f and g with
limx→	 f 	x
 � limx→	 g	x
 � 	 that satisfy the following.

(a) lim
x→	

�
g
f 	

	
x
x





� � 3 (b) lim
x→	

�
g
f 	

	
x
x





� � 0

(c) lim
x→	

�
g
f 	

	
x
x





� � 	

1��1
x

�

�
1��

x
1
2�

Extending the Ideas

70. Grapher Precision Let f 	x
 � �
1 �

x
c
1
o
2
s x6

� .

(a) Explain why some graphs of f may give false information
about  limx→0 f 	x
.  (Hint: Try the window [�1, 1] by 
[�0.5, 1].)

(b) Explain why tables may give false information about  
limx→0 f 	x
.  (Hint: Try tables with increments of 0.01.)

(c) Use l’Hôpital’s Rule to find  limx→0 f 	x
.
(d) Writing to Learn This is an example of a function for
which graphers do not have enough precision to give reliable
information. Explain this statement in your own words.

71. Cauchy’s Mean Value Theorem Suppose that functions
f and g are continuous on �a, b� and differentiable throughout 
	a, b
 and suppose also that  g� 
 0  throughout 	a, b
. Then
there exists a number c in 	a, b
 at which

�
g
f �

�

	
	
c
c





� � �
g
f 	
	
b
b





�

�

f
g
	
	
a
a





� .

Find all values of c in 	a, b
 that satisfy this property for the
following given functions and intervals.

(a) f 	x
 � x3 � 1, g	x
 � x2 � x, �a, b� � ��1, 1� c � 1/3

(b) f 	x
 � cos x, g	x
 � sin x, �a, b� � �0, p�2� c � p/4

72. Why 0	 and 0�	 Are Not Indeterminate Forms Assume
that f 	x
 is nonnegative in an open interval containing c and
limx→c f 	x
 � 0.

(a) If  lim
x→c

g	x
 � 	, show that  lim
x→c

f 	x
g	x
 � 0.

(b) If  lim
x→c

g	x
 � �	, show that  lim
x→c

f 	x
g	x
 � 	.

Quick Quiz for AP* Preparation: Sections 8.1 and 8.2

You should solve the following problems without using 
a graphing calculator.

1. Multiple Choice Which of the following gives the value of

lim
x→0

?

(A) �1�3 (B) 0 (C) 2�9

(D) 4�9 (E) Does not exist

2. Multiple Choice Which of the following gives the value of
lim
x→0� 

(3x2x)? D

(A) 0 (B) 1 (C) 2

(D) 3 (E) Does not exist

(x � 1)4�3 � (4�3)x � 1
���

x2

3. Multiple Choice Which of the following gives the value of

lim
x→2

?

(A) ��
sin

4
2

� (B) �
sin

4
2

� (C) ��
sin

2
2

�

(D) �
sin

2
2

� (E) Does not exist

4. Free Response The second and fifth terms of a geometric
sequence are �4 and 1�2, respectively. Find

(a) the first term, 8 (b) the common ratio, �1�2

(c) an explicit rule for the nth term, and an � (�1)n�1(24�n)

(d) a recursive rule for the nth term. an � (�1�2)an�1

�
x

2 sin t dt
��

x2 � 4

Possible answers: (a) f (x) � 7(x � 3), g(x) � x � 3
(b) f (x) � (x � 3)2, g(x) � x � 3
(c) f (x) � x � 3, g(x) � (x � 3)3

Possible answers: (a) f (x) � 3x � 1, g(x) � x
(b) f (x) � x � 1, g(x) � x2

(c) f (x) � x2, g(x) � x � 1

C

B

5128_Ch08_434-471.qxd  1/13/06  1:19 PM  Page 452
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Relative Rates of Growth

Comparing Rates of Growth
We restrict our attention to functions whose values eventually become and remain positive
as x→�.

The exponential function ex grows so rapidly and the logarithm function ln x grows so
slowly that they set standards by which we can judge the growth of other functions. The
graphs (Figure 8.12) of ex, ln x, and x suggest how rapidly and slowly ex and ln x, respec-
tively, grow in comparison to x.

In fact, all the functions ax, a � 1, grow faster (eventually) than any power of x, even
x1,000,000 (Exercise 39), and hence faster (eventually) than any polynomial function.

To get a feeling for how rapidly the values of ex grow with increasing x, think of graph-
ing the function on a large blackboard, with the axes scaled in centimeters. At x � 1 cm, the
graph is e1 � 3 cm above the x-axis. At x � 6 cm, the graph is e6 � 403 cm � 4 m high. (It
is about to go through the ceiling if it hasn’t done so already.) At x � 10 cm, the graph is
e10 � 22,026 cm � 220 m high, higher than most buildings. At x � 24 cm, the graph is
more than halfway to the moon, and at x � 43 cm from the origin, the graph is high enough
to reach well past the sun’s closest stellar neighbor, the red dwarf star Proxima Centauri:

e43 � 4.7 � 1018 cm

� 4.7 � 1013 km

� 1.57 � 108 light-seconds

� 5.0 light-years.

The distance to Proxima Centauri is 4.2 light-years. Yet with x � 43 cm from the origin, the
graph is still less than 2 feet to the right of the y-axis.

In contrast, the logarithm function ln x grows more slowly as x→� than any positive
power of x, even x1�1,000,000 (Exercise 41). Because ln x and ex are inverse functions, the
calculations above show that with axes scaled in centimeters, you have to go nearly 5 light-
years out on the x-axis to find where the graph of ln x is even 43 cm high.

In fact, all the functions loga x, a � 1, grow slower (eventually) than any positive 
power of x.

These comparisons of exponential, polynomial, and logarithmic functions can be made
precise by defining what it means for a function f �x� to grow faster than another function
g�x� as x→�.

Light travels about 300,000 km �sec
in a vacuum.

8.3

What you’ll learn about

• Comparing Rates of Growth

• Using L’Hôpital’s Rule to 
Compare Growth Rates

• Sequential versus Binary Search

. . . and why 

Understanding growth rates as
x→� is an important feature in
understanding the behavior of
functions.

Figure 8.12 The graphs of y � ex,
y � ln x, and y � x.

[–3, 9] by [–2, 6]

y = ex

y = ln x
y = x

Grace Murray Hopper
(1906–1992)

Computer scientists

use function compar-

isons like the ones in

this section to measure

the relative efficiencies

of computer programs.

The pioneering work of

Rear Admiral Grace

Murray Hopper in the field of computer

technology led the navy, and the coun-

try, into the computer age. Hopper grad-

uated from Yale in 1934 with a Ph.D. in

Mathematics. During World War II she

joined the navy and became director of

a project that resulted in the develop-

ment of COBOL, a computer language

that enabled computers to “talk to one

another.” On September 6, 1997, the

navy commissioned a multi-mission ship 

the “USS Hopper.”

According to these definitions, y � 2x does not grow faster than y � x as x→�. The
two functions grow at the same rate because

lim
x→�

�
2
x
x
� � lim

x→�
2 � 2,

DEFINITIONS Faster, Slower, Same-rate Growth as x→�

Let f �x� and g�x� be positive for x sufficiently large.

1. f grows faster than g (and g grows slower than f ) as  x→� if

lim
x→�

�
g
f �

�
x
x
�
�

� � �, or, equivalently, if lim
x→�

�
g
f �

�
x
x
�
�

� � 0.

2. f and g grow at the same rate as  x→� if

lim
x→�

�
g
f �

�
x
x
�
�

� � L � 0.    L finite and not zero
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which is a finite nonzero limit. The reason for this apparent disregard of common sense is
that we want “f grows faster than g” to mean that for large x-values, g is negligible in com-
parison to f.

If L � 1 in part 2 of the definition, then f and g are right end behavior models for each
other (Section 2.2). If f grows faster than g, then

lim
x→	

�
f 	x


f
�

	x

g	x

� � lim

x→	 (1 � �
g
f 	

	
x
x





� ) � 1 � 0 � 1,

so f is a right end behavior model for f � g. Thus, for large x-values, g can be ignored in
the sum f � g. This explains why, for large x-values, we can ignore the terms

g	x
 � an�1xn�1 � … � a0

in

f 	x
 � anxn � an�1xn�1 � … � a0 ;

that is, why anxn is an end behavior model for

anxn � an�1xn�1 � … � a0.

Using L’Hôpital’s Rule to Compare Growth Rates
L’Hôpital’s Rule can help us to compare rates of growth, as shown in Example 1.

EXAMPLE 1 Comparing ex and x2 as x→�
Show that the function ex grows faster than x2 as x→	.

SOLUTION

We need to show that limx→	 (ex�x2) � 	. Notice this limit is of indeterminate type
	�	, so we can apply l’Hôpital’s Rule and take the derivative of the numerator and 
the derivative of the denominator. In fact, we have to apply l’Hôpital’s Rule twice.

lim
x→	

�
x
e

2

x

� � lim
x→	

�
2
e
x

x

� � lim
x→	

�
e
1

x

� � 	

Now try Exercise 1.

Comparing Rates of Growth as x→�

1. Show that  ax, a � 1, grows faster than x2 as  x→	.

2. Show that 3x grows faster than 2x as  x→	.

3. If  a � b � 1, show that ax grows faster than bx as  x→	.

EXPLORATION 1

EXAMPLE 2 Comparing ln x with x and x2 as x→�
Show that ln x grows slower than (a) x and (b) x2 as  x→	.

SOLUTION

(a) Solve Analytically

lim
x→	

�
ln

x
x

� � lim
x→	

l’Hôpital’s Rule

� lim
x→	

�
1
x

� � 0
continued

1�x
�

1
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Support Graphically Figure 8.13 suggests that the graph of the function 
f 	x
 � 	ln x
�x drops dramatically toward the x-axis as x outstrips  ln x.

(b) lim
x→	

�
ln
x2

x
� � lim

x→	 (�
ln

x
x

� • �
1
x

� ) � 0 • 0 � 0

Now try Exercise 5.

EXAMPLE 3 Comparing x with x � sin x as x→�
Show that x grows at the same rate as x � sin x as x→	.

SOLUTION

We need to show that lim
x→	

((x � sin x)�x) is finite and not 0. The limit can be computed
directly.

lim
x→	

�
x �

x
sin x
� � lim

x→	 �1 � �
sin

x
x

�� � 1

Now try Exercise 9.

EXAMPLE 4 Comparing Logarithmic Functions as x→�
Let a and b be numbers greater than 1. Show that  loga x and  logb x grow at the same
rate as x→	.

SOLUTION
lim
x→	

�
l
l
o
o
g
g

a

b

x
x

� � lim
x→	

� �
l
l
n
n

b
a

�

The limiting value is finite and nonzero. Now try Exercise 13.

Growing at the same rate is a transitive relation.

ln x� ln a
�
ln x� ln b

Transitivity of Growing Rates

If f grows at the same rate as g as  x→	 and g grows at the same rate as h as
x→	, then f grows at the same rate as h as  x→	.

The reason is that

lim
x→	

�
g
f
� � L and lim

x→	
�
g
h

� � M

together imply that

lim
x→	

�
h
f
� � lim

x→	 ( �
g
f
� • �

g
h

� ) � LM.

If L and M are finite and nonzero, then so is LM.

EXAMPLE 5 Growing at the Same Rate as x→�
Show that f 	x
 � �x�2��� 5� and  g	x
 � 	2�x� � 1
2 grow at the same rate as  x→	.

SOLUTION

Solve Analytically We show that f and g grow at the same rate by showing that
they both grow at the same rate as  h	x
 � x.

lim
x→	

�
h
f(
(
x
x
)
)

� � lim
x→	

�
�x�2

x
��� 5�
� � lim

x→	 �1� �� �
x�5

2�� � 1

and

[0, 50] by [–0.2, 0.5]

Figure 8.13 The x-axis is a horizontal
asymptote of the function f 	x
 � 	ln x
�x.
(Example 2)

continued
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lim
x→�

�
h
g(

(
x
x
)
)

� � lim
x→�

�
�2�x�

x
� 1�2

� � lim
x→� (�2�

�

x�

x�

� 1
� )2

� lim
x→� (2 � �

�

1

x�
� )2

� 4

Thus,

lim
x→�

�
g
f
� � lim

x→� ( �
h
f
� • �

h
g

� ) � 1 • �
1
4

� � �
1
4

� ,

and f and g grow at the same rate as x→�.

Support Graphically The graph of  y � g� f in Figure 8.14 suggests that the quo-
tient g� f is an increasing function with horizontal asymptote  y � 4.  This supports that
f and g grow at the same rate. Now try Exercise 31.

Sequential versus Binary Search
Computer scientists sometimes measure the efficiency of an algorithm by counting the num-
ber of steps a computer must take to make the algorithm do something (Figure 8.15). (Your
graphing calculator works according to algorithms programmed into it.) There can be signifi-
cant differences in how efficiently algorithms perform, even if they are designed to accomplish
the same task. Here is an example.

Webster’s Third New International Dictionary lists about 26,000 words that begin with
the letter a. One way to look up a word, or to learn if it is not there, is to read through the
list one word at a time until you either find the word or determine that it is not there. This
sequential search method makes no particular use of the words’ alphabetical arrangement.
You are sure to get an answer, but it might take about 26,000 steps.

Another way to find the word or to learn that it is not there is to go straight to the mid-
dle of the list (give or take a few words). If you do not find the word, then go to the mid-
dle of the half that would contain it and forget about the half that would not. (You know
which half would contain it because you know the list is ordered alphabetically.) This
binary search method eliminates roughly 13,000 words in this first step. If you do not find
the word on the second try, then jump to the middle of the half that would contain it.
Continue this way until you have found the word or divided the list in half so many times
that there are no words left. How many times do you have to divide the list to find the word
or learn that it is not there? At most 15, because

�
26

2
,0
15
00

� � 1.

This certainly beats a possible 26,000 steps.
For a list of length n, a sequential search algorithm takes on the order of n steps to find

a word or determine that it is not in the list.

EXAMPLE 6 Finding the Order of a Binary Search

For a list of length n, how many steps are required for a binary search?

SOLUTION

A binary search takes on the order of log2 n steps. The reason is if 2m�1 � n � 2m, then
m � 1 � log2 n � m, and the number of bisections required to narrow the list to one
word will be at most m, the smallest integer greater than or equal to log2 n.

Now try Exercise 43.

On a list of length n, there is a big difference between a sequential search (order n) and
a binary search (order log2 n) because n grows faster than log2 n as n→�. In fact,

lim
n→�

�
log

n

2 n
� � lim

n→�
�
n

1
ln2
� � �.

[0, 100] by [–2, 5]

Figure 8.14 The graph of g� f appears 
to have the line y � 4 as a horizontal as-
ymptote. (Example 5)

Note

You would not use a sequential search

method to find a word, but you might

program a computer to search for a

word using this technique.

Figure 8.15 Computer scientists look
for the most efficient algorithms when they 
program searches.
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In Exercises 1–4, evaluate the limit.

1. lim
x→	

�
ln
ex

x
� 0 2. lim

x→	
�
x
e

3

x

� 	

3. lim
x→�	

�
e
x
2

2

x� 	 4. lim
x→	

�
e
x
2

2

x� 0

In Exercises 5 and 6, find an end behavior model (Section 2.2) for
the function.

5. f 	x
 � �3x4 � 5x3 � x � 1 �3x4

6. f 	x
 � �
2x3

x
�

�

3x
2

� 1
� 2x2

In Exercises 7 and 8, show that g is a right end behavior model for f.

7. g	x
 � x, f 	x
 � x � ln x

8. g	x
 � 2x, f 	x
 � �4�x�2��� 5�x�

9. Let f 	x
 � �
ex

e
�

x

x2

� . Find the

(a) local extreme values of f and where they occur.

(b) intervals on which f is increasing. [0, 2]

(c) intervals on which f is decreasing. (�	, 0] and [2, 	)

10. Let f 	x
 � �
x �

x
sin x
� .

Find the absolute maximum value of f and where it occurs.

Quick Review 8.3 (For help, go to Sections 2.2 and 4.1.)

Section 8.3 Exercises

In Exercises 1–4, show that ex grows faster than the given function.

1. x3 � 3x � 1 2. x20 lim
x→	

�
x
e
2

x

0� � 	

3. ecos x
lim
x→	

�
ec

e
o

x

s x� � 	 4. 	5�2
 x lim
x→	

�
(5

e
�2

x

)x� � 	

In Exercises 5–8, show that ln x grows slower than the given function.

5. x � ln x lim
x→	

�
x �

ln
l
x
n x
� � 0 6. �x� lim

x→	
�
l

�

n

x�

x
� � 0

7. �
3

x� lim
x→	

�
l

�

n
3

x�

x
� � 0 8. x3

lim
x→	

�
ln
x3

x
� � 0

In Exercises 9–12, show that x2 grows at the same rate as the given
function.

9. x2 � 4x lim
x→	

�
x2 �

x2
4x

� � 1 10. �x4 � 5�x� lim
x→	

�
�x4

x
�
2

5�x�
� � 1

11. �
3

x6 � x�2� lim
x→	

�
�3 x6

x2
� x�2�
� � 1 12. x2 � sin x lim

x→	
�
x2 �

x2
sin x
� � 1

In Exercises 13 and 14, show that the two functions grow at the same
rate.

13. ln x, log�x� 14. ex�1, ex lim
x→	

�
ex

e

�

x

1

� � e

In Exercises 15–20, determine whether the function grows faster than
ex, at the same rate as ex, or slower than ex as  x→	.

15. �1� �� x�4� Slower 16. 4x Faster

17. x ln x � x Slower 18. xex Faster

19. x1000 Slower 20. 	ex � e�x
�2 Same rate

In Exercises 21–24, determine whether the function grows faster than
x2, at the same rate as x2, or slower than x2 as  x→	.

21. x3 � 3 Faster 22. 15x � 3 Slower

23. ln x Slower 24. 2x Faster

In Exercises 25–28, determine whether the function grows faster than
ln x, at the same rate as ln x, or slower than ln x as x→	.

25. log2 x2 Same rate 26. 1��x� Slower

27. e�x Slower 28. 5 ln x Same rate

In Exercises 29 and 30, order the functions from slowest-growing to
fastest-growing as x→	.

29. ex, xx, 	ln x
 x, ex�2 ex�2, ex, (ln x)x, xx

30. 2x, x2, 	ln 2
 x, ex (ln 2)x, x2, 2x, ex

In Exercises 31–34, show that the three functions grow at the same
rate as  x→	.

31. f1	x
 � �x�, f2	x
 � �1�0�x��� 1�, f3	x
 � �x��� 1�

32. f1	x
 � x2, f2	x
 � �x�4��� x�, f3	x
 � �x�4��� x�3�

33. f1	x
 � 3x, f2	x
 � �9�x��� 2�x�, f3	x
 � �9�x��� 4�x�

34. f1	x
 � x3, f2	x
 � �
x4 �

x
2
�

x2

1
� 1

� , f3	x
 � �
2
x
x
2

5

�

�

1
1

�

In Exercises 35–38, only one of the following is true. 

i. f grows faster than g.

ii. g grows faster than f .

iii. f and g grow at the same rate.

Use the given graph of f�g to determine which one is true.

35. 36.

37. 38.

Group Activity In Exercises 39–41, do the following
comparisons.

39. Comparing Exponential and Power Functions

(a) Writing to Learn Explain why ex grows faster than 
xn as  x→	 for any positive integer n, even  n � 1,000,000.
(Hint: What is the nth derivative of xn?)

[0, 20] by [–1, 3][0, 100] by [–1, 1.5]

[0, 10] by [–0.5, 1][0, 100] by [–1000, 10000]

7. lim
x→∞

�
g
f (
(
x
x
)
)

� � lim
x→∞ �1 � �

ln
x

x
�� � 1 � 0 � 1

lim
x→∞

�
g
f (
(
x
x
)
)

� � lim
x→∞ �1 � �

4
5
x
�� � 1

9. (a) Local minimum at (0, 1) Local maximum at �(2, 1.541)

f doesn’t have an absolute maximum value. The values are always less than 2 and the
values get arbitrarily close to 2 near x � 0, but the function is undefined at x � 0.13. lim

x→∞ 
�
lo

l
g
n

�
x

x�
� � �

2 ln
1

10
�

lim
x→∞ 

�
x3 �

e
3

x

x � 1
� � ∞

f grows faster than g

f and g grow at the same rate f and g grow at the same rate

g grows faster than f
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(b) Writing to Learn Explain why  ax, a � 1, grows faster
than xn as  x→	 for any positive integer n.

40. Comparing Exponential and Polynomial Functions

(a) Writing to Learn Show that ex grows faster than any
polynomial

an xn � an�1xn�1 � … � a1x � a0, an � 0,

as  x→	.  Explain.

(b) Writing to Learn Show that  ax, a � 1, grows faster than
any polynomial

an xn � an�1xn�1 � … � a1x � a0, an � 0,

as  x→	.  Explain.

41. Comparing Logarithm and Power Functions  

(a) Writing to Learn Show that  ln x grows slower than x1�n

as  x→	 for any positive integer n, even  n � 1,000,000.
Explain.

(b) Writing to Learn Show that for any number  a � 0,
ln x grows slower than xa as  x→	.  Explain.

42. Comparing Logarithm and Polynomial Functions Show
that ln x grows slower than any nonconstant polynomial

an xn � an�1xn�1 � … � a1x � a0, an � 0,

as x→	.

43. Search Algorithms Suppose you have three different
algorithms for solving the same problem and each algorithm
provides for a number of steps that is of order of one of the
functions listed here.

n log2 n, n3�2, n	log2 n
2

Which of the algorithms is likely the most efficient in the long
run? Give reasons for your answer.

44. Sequential and Binary Search Suppose you are looking for
an item in an ordered list one million items long. How many
steps might it take to find the item with (a) a sequential search?
(b) a binary search?

45. Growing at the Same Rate Suppose that polynomials p	x

and q	x
 grow at the same rate as  x→	.  What can you
conclude about

(a) lim
x→	

�
p
q

	
	
x
x





�? (b) lim
x→�	

�
p
q

	
	
x
x





�?

Standardized Test Questions
You may use a graphing calculator to solve the following 
problems.

46. True or False A search of order n log2 n is more efficient
than a search of order n3�2. Justify your answer.

47. True or False The function f (x) � 100x2 � 50x � 1 grows
faster than the function x2 � 1 as x→	. Justify your answer.

48. Multiple Choice Which of the following functions grows
faster than x5 � x2 � 1 as x→	? E

(A) x2 � 1 (B) x3 � 2 (C) x4 � x2 (D) x5 (E) x6 � 1

49. Multiple Choice Which of the following functions grows
slower than log13 x as x→	? A

(A) e�x (B) log2 x (C) ln x (D) log x (E) x ln x

50. Multiple Choice Which of the following functions grows at
the same rate as ex as x→	? C

(A) e2x (B) e3x (C) ex�2 (D) e�x (E) e�x�1

51. Multiple Choice Which of the following functions grows at
the same rate as �x8 � x�4� as x→	? D

(A) x (B) x2 (C) x3 (D) x4 (E) x5

Explorations
52. Let

f 	x
 � an xn � an�1xn�1 � … � a1x � a0

and
g	x
 � bm xm � bm�1xm�1 � … � b1x � b0

be any two polynomial functions with  an � 0, bm � 0.

(a) Compare the rates of growth of x5 and x2 as  x→	.

(b) Compare the rates of growth of 5x3 and 2x3 as  x→	.

(c) If xm grows faster than xn as  x→	, what can you conclude
about m and n? m � n

(d) If xm grows at the same rate as xn as  x→	, what can you
conclude about m and n? m � n

(e) If g	x
 grows faster than f 	x
 as  x→	, what can you
conclude about their degrees? m � n (or, degree of g � degree of f )

(f) If g	x
 grows at the same rate as f 	x
 as  x→	, what can
you conclude about their degrees? m � n (or, degree of g � degree 

Extending the Ideas
53. Suppose that the values of the functions f 	x
 and g	x
 eventually

become and remain negative as  x→	.  We say that 

i. f decreases faster than g as  x→	 if

lim
x→	

�
g
f 	

	
x
x





� � 	.

ii. f and g decrease at the same rate as  x→	 if

lim
x→	

�
g
f 	

	
x
x





� � L 
 0.

(a) Show that if f decreases faster than g as  x→	, then � f �
grows faster than �g� as  x→	.

(b) Show that if f and g decrease at the same rate as  x→	,
then � f � and �g� grow at the same rate as  x→	.

54. Suppose that the values of the functions f 	x
 and g	x
 eventually
become and remain positive as  x→�	.  We say that 

i. f grows faster than g as  x→�	 if

lim
x→�	

�
g
f 	

	
x
x





� � 	.

ii. f and g grow at the same rate as  x→�	 if

lim
x→�	

�
g
f 	

	
x
x





� � L 
 0.

(a) Show that if f grows faster than g as  x→�	, then f 	�x

grows faster than g	�x
 as  x→	.

(b) Show that if f and g grow at the same rate as  x→�	, then
f 	�x
 and g	�x
 grow at the same rate as  x→	.

43. The one which is O(n log2 n) is likely the most efficient, because of the
three given functions, it grows the most slowly as n → ∞.

(a) 1,000,000 (b) 20

45. (a) The limit will be the ratio of the leading coefficients of the polynomials.
(b) The limit will be the same as in part (a).

True, because lim
n→∞ 

�
n l

n
o
3
g
�2
2 n

� � 0.

47. False. They grow at the same rate.
52. (a) x5 grows faster than x2.

(b) They grow at the same rate.

of f )
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Improper Integrals

Infinite Limits of Integration
Consider the infinite region that lies under the curve y � e�x�2 in the first quadrant
(Figure 8.16a). You might think this region has infinite area, but we will see that it is finite.
Here is how we assign a value to the area. First we find the area A	b
 of the portion of the
region that is bounded on the right by x � b (Figure 8.16b).

A	b
 � b

0

e�x�2 dx � �2e�x�2]b

0
� �2e�b�2 � 2

Then we find the limit of A	b
 as  b→	.

lim
b→	

A	b
 � lim
b→	

	�2e�b�2 � 2
 � 2

The area under the curve from 0 to 	 is

	

0

e�x�2 dx � lim
b→	

b

0

e�x�2 dx � 2.

8.4

What you’ll learn about

• Infinite Limits of Integration

• Integrands with Infinite 
Discontinuities

• Test for Convergence and 
Divergence

• Applications

. . . and why 

The techniques of this section
allow us to extend integration
techniques to cases where the 
interval of integration [a, b] is not
finite or where integrands are not
continuous.

In parts 1 and 2, if the limit is finite the improper integral converges and the limit is the
value of the improper integral. If the limit fails to exist, the improper integral diverges. In
part 3, the integral on the left-hand side of the equation converges if both improper inte-
grals on the right-hand side converge, otherwise it diverges and has no value. It can be
shown that the choice of c in part 3 is unimportant. We can evaluate or determine the con-
vergence or divergence of �	

�	
f 	x
 dx with any convenient choice.

EXAMPLE 1 Writing Improper Integrals as Limits

Express the improper integral �	
�	

ex dx in terms of limits of definite integrals and then
evaluate the integral.

(a)

b

(b)

Figure 8.16 (a) The area in the first 
quadrant under the curve y � e�x�2 is (b)

lim
b→	

b

0

e�x�2 dx.

continued

DEFINITION Improper Integrals with Infinite Integration Limits

Integrals with infinite limits of integration are improper integrals.

1. If f 	x
 is continuous on �a, 	
, then

	

a

f 	x
 dx � lim
b→	

b

a

f 	x
 dx.

2. If f 	x
 is continuous on 	�	, b�, then

b

�	

f 	x
 dx � lim
a→�	

b

a

f 	x
 dx.

3. If f 	x
 is continuous on 	�	, 	
, then

	

�	

f 	x
 dx � c

�	

f 	x
 dx � 	

c

f 	x
 dx,

where c is any real number.
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SOLUTION

Choosing c � 0 in part 3 of the definition we can write the integral as

	

�	

ex dx �  lim
b→�	

0

b

ex dx � lim
b→	

b

0

ex dx.

Next we evaluate the definite integrals and compute the corresponding limits.

	

�	

ex dx �  lim
b→�	

0

b

ex dx � lim
b→	

b

0

ex dx

�  lim
b→�	

(1 � eb) � lim
b→	

(eb � 1)

� 1 � 	

The integral diverges because the second part diverges. Now try Exercise 3.

EXAMPLE 2 Evaluating an Improper Integral on [1, �)

Does the improper integral  	

1

�
d
x
x
� converge or diverge?

SOLUTION

	

1

�
d
x
x
� � lim

b→	
b

1

�
d
x
x
� Definition

� lim
b→	

ln x]b

1

� lim
b→	

	ln b � ln 1
 � 	

Thus, the integral diverges. Now try Exercise 5.

EXAMPLE 3 Using Partial Fractions with Improper Integrals

Evaluate 	

0
�
x2 �

2
4
d
x
x
� 3

� or state that it diverges.

SOLUTION

By definition, 	

0
�
x2 �

2
4
d
x
x
� 3

� � lim
b→	

b

0
�
x2 �

2
4
d
x
x
� 3

�. We use partial fractions to 

integrate the definite integral. Set

�
x2 � 4

2
x � 3
� � �

x �

A
1

� � �
x �

B
3

�

and solve for A and B.

�
x2 � 4

2
x � 3
� ��

(x �

A(x
1)

�

(x
3
�

)
3)

���
(x �

B(x
3)

�

(x
1
�

)
1)

�

�
(A � B)x � (3A � B)
���

(x � 1)(x � 3)
continued
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Thus, A � B � 0 and 3A � B � 2. Solving, we find A � 1 and B � �1. Therefore,

�
x2 � 4

2
x � 3
� � �

x �

1
1

� � �
x �

1
3

�

and

b

0
�
x2 �

2
4
d
x
x
� 3

� � b

0
�
x

d
�

x
1

� � b

0
�
x

d
�

x
3

�

� ln (x � 1)�b

0
� ln (x � 3)�b

0

� ln (b � 1) � ln (b � 3) � ln 3

� ln �
b
b

�

�

1
3

� � ln 3

So,
lim
b→	 �ln ��bb

�

�

1
3

�� � ln 3� � lim
b→	 �ln ��11

�

�

1
3
�

�

b
b

�� � ln 3� � ln 3.

Thus, 	

0
�
x2 �

2
4
d
x
x
� 3

� � ln 3. Now try Exercise 13.

In Example 4 we use l’Hôpital’s Rule to help evaluate the improper integral.

EXAMPLE 4 Using L’Hôpital’s Rule with Improper Integrals

Evaluate �
	

1 xe�x dx or state that it diverges.

SOLUTION

By definition �
	

1 xe�x dx � lim
b→	

�
b

1 xe�x dx. We use integration by parts to evaluate the

definite integral. Let

u � x dv � e�x dx

du � dx v � �e�x.

Then

b

1

xe�x dx � [�xe�x]b

1
� b

1

e�x dx

� [�xe�x � e�x]b

1

� [�(x � 1)e�x]b

1

� �(b � 1)e�b � 2e�1.

So,
lim
b→	

[�(b � 1)e�b � 2e�1] � lim
b→	

�
�(b

e
�
b

1)
� � �

2
e

�

� lim
b→	

�
�

eb

1
� � �

2
e

�

� �
2
e

�.

Thus �
	

1 xe�x dx � 2/e. Now try Exercise 17.
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EXAMPLE 5 Evaluating an Integral on (��, �)

Evaluate 	

�	

�
1 �

dx
x2� .

SOLUTION

According to the definition (part 3) we can write

	

�	

�
1 �

dx
x2� � 0

�	

�
1 �

dx
x2� � 	

0

�
1 �

dx
x2� .

Next, we evaluate each improper integral on the right-hand side of the equation above.

0

�	

�
1 �

dx
x2� � lim

a→�	
0

a

�
1 �

dx
x2�

� lim
a→�	

tan�1 x]0

a

� lim
a→�	

	tan�1 0 � tan�1 a
 � 0 � (� �
p

2
� ) � �

p

2
�

	

0

�
1 �

dx
x2� � lim

b→	
b

0

�
1 �

dx
x2�

� lim
b→	

tan�1 x]b

0

� lim
b→	

	tan�1 b � tan�1 0
 � �
p

2
� � 0 � �

p

2
�

Thus, 	

�	

�
1 �

dx
x2� � �

p

2
� � �

p

2
� � p.

Now try Exercise 21.

Integrands with Infinite Discontinuities
Another type of improper integral arises when the integrand has a vertical asymptote —
an infinite discontinuity— at a limit of integration or at some point between the limits of
integration.

Consider the infinite region in the first quadrant that lies under the curve y � 1��x�
from x � 0 to x � 1 (Figure 8.17a). First we find the area of the portion from a to 1
(Figure 8.17b). 

1

a

�
�

dx

x�
� � 2�x�]1

a
� 2 � 2�a�

Then, we find the limit of this area as a→0�.

lim
a→0�

1

a

�
�

dx

x�
� � lim

a→0�
	2 � 2�a� 
 � 2

The area under the curve from 0 to 1 is

1

0

�
�

dx

x�
� � lim

a→0�
1

a

�
�

dx

x�
� � 2.

[0, 2] by [–1, 5]

(a)

[0, 2] by [–1, 5]

(b)

a

Figure 8.17 (a) The area under the curve 
y � 1��x� from x � 0 to x � 1 is (b)

lim
a→0�

1

a

	1��x� 
 dx.
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In parts 1 and 2, if the limit is finite the improper integral converges and the limit is the
value of the improper integral. If the limit fails to exist the improper integral diverges. In
part 3, the integral on the left-hand side of the equation converges if both integrals on the
right-hand side have values, otherwise it diverges.

Investigation 1

0
�
d
x
x
p�

1. Explain why these integrals are improper if  p � 0.

2. Show that the integral diverges if  p � 1.

3. Show that the integral diverges if  p � 1.

4. Show that the integral converges if  0 � p � 1.

EXPLORATION 1

EXAMPLE 6 Infinite Discontinuity at an Interior Point

Evaluate 3

0

�
	x �

dx
1
2�3� .

SOLUTION

The integrand has a vertical asymptote at  x � 1  and is continuous on �0, 1
 and 	1, 3�.
Thus, by part 3 of the definition above

3

0

�
	x �

dx
1
2�3� � 1

0

�
	x �

dx
1
2�3� � 3

1

�
	x �

dx
1
2�3� .

Next, we evaluate each improper integral on the right-hand side of this equation.

1

0

�
	x �

dx
1
2�3� � lim

c→1�
c

0

�
	x �

dx
1
2�3�

� lim
c→1�

3	x � 1
1�3]c

0

� lim
c→1�

�3	c � 1
1�3 � 3� � 3
continued

DEFINITION Improper Integrals with Infinite Discontinuities

Integrals of functions that become infinite at a point within the interval of integra-
tion are improper integrals.

1. If f 	x
 is continuous on 	a, b�, then

b

a

f 	x
 dx � lim
c→a�

b

c

f 	x
 dx.

2. If f 	x
 is continuous on �a, b
, then

b

a

f 	x
 dx � lim
c→b�

c

a

f 	x
 dx.

3. If f 	x
 is continuous on �a, c
 � 	c, b�, then

b

a

f 	x
 dx � c

a

f 	x
 dx � b

c

f 	x
 dx.
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464 Chapter 8 Sequences, L’Hôpital’s Rule, and Improper Integrals

3

1

�
	x �

dx
1
2�3� � lim

c→1�
3

c

�
	x �

dx
1
2�3�

� lim
c→1�

3	x � 1
1�3]3

c

� lim
c→1�

�3	3 � 1
1�3 � 3	c � 1
1�3� � 3�3 2�

We conclude that

3

0

�
	x �

dx
1
2�3� � 3 � 3�3 2�.

Now try Exercise 25.

EXAMPLE 7 Infinite Discontinuity at an Endpoint

Evaluate  2

1

�
x

d
�

x
2

� .

SOLUTION

The integrand has an infinite discontinuity at x � 2  and is continuous on �1, 2
. 
Thus,

2

1

�
x

d
�

x
2

� � lim
c→2�

c

1

�
x

d
�

x
2

�

� lim
c→2�

ln �x � 2�]c

1

� lim
c→2�

	ln �c � 2� � ln ��1� 
 � �	.

The original integral diverges and has no value. Now try Exercise 29.

Test for Convergence and Divergence 
When we cannot evaluate an improper integral directly (often the case in practice) we first
try to determine whether it converges or diverges. If the integral diverges, that’s the end of
the story. If it converges, we can then use numerical methods to approximate its value. In
such cases the following theorem is useful.

EXAMPLE 8 Investigating Convergence

Does the integral �	
1 e�x2 dx converge?

SOLUTION

Solve Analytically By definition, 	

1

e�x2 dx � lim
b→	

b

1

e�x2 dx.

THEOREM 6 Comparison Test

Let f and g be continuous on �a, 	
 with  0  f 	x
  g	x
 for all x � a.  Then

1. 	

a

f 	x
 dx converges if 	

a

g	x
 dx converges.

2. 	

a

g	x
 dx diverges if 	

a

f 	x
 dx diverges.
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We cannot evaluate the latter integral directly because there is no simple formula for the
antiderivative of e�x2. We must therefore determine its convergence or divergence some
other way. Because e�x2

� 0 for all x, �b
1 e�x2 dx is an increasing function of b. There-

fore, as  b→	, the integral either becomes infinite as  b→	 or it is bounded from
above and is forced to converge (have a finite limit).

The two curves y � e�x2 and y � e�x intersect at 	1, e�1
, and 0 � e�x2
 e�x for 

x � 1 (Figure 8.18). Thus, for any b � 1,

0 � b

1

e�x2 dx  b

1

e�x dx � �e�b � e�1 � e�1 � 0.368.

As an increasing function of b bounded above by 0.368, the integral �	
1 e�x2 dx must

converge. This does not tell us much about the value of the improper integral, however,
except that it is positive and less than 0.368.

Support Graphically The graph of NINT 	e�x2, x, 1, x
 is shown in Figure 8.19. The
value of the integral rises rapidly as x first moves away from 1 but changes little past
x � 3.  Values sampled along the curve suggest a limit of about 0.13940 as x→	. 
(Exercise 57 shows how to confirm the accuracy of this estimate.)

Now try Exercise 31.

Applications

EXAMPLE 9 Finding Circumference

Use the arc length formula (Section 7.4) to show that the circumference of the circle
x2 � y2 � 4 is 4p.

SOLUTION

One fourth of this circle is given by y � �4� �� x�2�, 0  x  2. Its arc length is 

L � 2

0

�1� �� 	�y��
2� dx, where y� � ��
�4�

x

�� x�2�
� .

The integral is improper because y� is not defined at x � 2. We evaluate it as a limit.

L � 2

0

�1� �� 	�y��
2� dx � 2

0
�1� �� �

4� �

x�
2

x�2�� dx

� 2

0
��

4� ��4�x�2�� dx

� lim
b→2�

b

0
��

4� ��4�x�2�� dx

� lim
b→2�

b

0
��

1� �� 	
1�x��2�
2�� dx

� lim
b→2�

2 sin�1 �
2
x

� ]b

0

� lim
b→2�

2[sin�1 �
b
2

� � 0] � p

The circumference of the quarter circle is p; the circumference of the circle is 4p.
Now try Exercise 47.

Rounded up 
to be safe

[0, 3] by [–0.5, 1.5]

(1, e–1)

[0, 20] by [–0.1, 0.3]

X = 19 Y = .13940279

Figure 8.18 The graph of y � e�x2 lies
below the graph of y � e�x for x � 1. 
(Example 8)

Figure 8.19 The graph of 
NINT 	e�x2, x, 1, x
. (Example 8)
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EXAMPLE 10 Finding the Volume of an Infinite Solid

Find the volume of the solid obtained by revolving the curve  y � xe�x, 0  x � 	
about the x-axis.

SOLUTION

Figure 8.20 shows a portion of the region to be revolved about the x-axis. The area of a
typical cross section of the solid is

p	radius
2 � py2 � px2e�2x.

The volume of the solid is

V � p	

0

x2e�2x dx � p lim
b→	

b

0

x2e�2x dx.

Integrating by parts twice we obtain the following.

x2e�2x dx � ��
x
2

2

� e�2x � xe�2x dx

� ��
x
2

2

� e�2x � �
2
x

� e�2x � �
1
2

� e�2x dx

� ��
x
2

2

� e�2x � �
2
x

� e�2x � �
1
4

� e�2x � C

� ��
2x2 �

4e
2
2
x
x

� 1
� � C

u � x, dv � e�2x dx

du � dx, v � ��
2

1
� e�2x

u � x2, dv � e�2x dx

du � 2x dx, v � ��
2

1
� e�2x

Gabriel’s Horn

Consider the region R in the first quadrant bounded above by y � 1/x and on the
left by x � 1. The region is revolved about the x-axis to form an infinite solid called
Gabriel’s Horn, which is shown in the figure.

1. Explain how Example 1 shows that the region R has infinite area.

2. Find the volume of the solid.

3. Find the area of the shadow that would be cast by Gabriel’s Horn.

4. Why is Gabriel’s Horn sometimes described as a solid that has finite volume but
casts an infinite shadow?

x

y

1
0

b

y � 1
x

EXPLORATION 2

continued

[0, 5] by [–0.5, 1]

Figure 8.20 The graph of y � xe�x.
(Example 10)
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Thus,

V � plim
b→	 [��2x2 �

4e
2
2
x
x

� 1
�]b

0

� plim
b→	 [��2b2 �

4e
2
2
b
b

� 1
� � �

1
4

� ] � �
p

4
� ,

and the volume of the solid is p�4. Now try Exercise 55.

Quick Review 8.4 (For help, go to Sections 1.2, 5.3, and 8.2.)

In Exercises 1–4, evaluate the integral.

1. 3

0

�
x

d
�

x
3

� ln 2 2. 1

�1

�
x
x
2 �

dx
1

� 0

3. �
x2

d
�

x
4

� �
1
2

� tan�1 �
2
x

� � C 4.  �
d
x
x
4� ��

1
3

�x�3 � C

In Exercises 5 and 6, find the domain of the function.

5. g	x
 � �
�9�

1

�� x�2�
� (�3, 3) 6. h	x
 � �

�x

1

��� 1�
� (1, ∞)

In Exercises 7 and 8, confirm the inequality.

7. ��co
x
s
2
x

� �  �
x
1
2� , �	 � x � 	 Because �1  cos x  1 for all x

8. �
�x�2

1

��� 1�
� � �

1
x

� , x � 1 Because �x2 � 1� � �x2� � x for x � 1

In Exercises 9 and 10, show that the functions f and g grow at the
same rate as  x→	.

9. f 	x
 � 4ex � 5, g	x
 � 3ex � 7 lim
x→∞

�
4
3
e
e

x

x
�

�

5
7

� � �
4
3

�

10. f 	x
 � �2�x��� 1�, g	x
 � �x��� 3�

Section 8.4 Exercises

In Exercises 1–4, (a) express the improper integral as a limit of 
definite integrals, and (b) evaluate the integral.

1. 	

0
�
x2

2
�

x
1

� dx 2. 	

1
�
x
d
1
x
/3�

3. 	

�	
�
(x2

2
�

x
1)2� dx 4. 	

1
�
�
dx

x�
�

In Exercises 5–24, evaluate the improper integral or state that it 
diverges.

5. 	

1
�
d
x
x
4� 1/3 6. 	

1
�
2
x
d
3
x

� 1

7. 	

1
�
�
d
3

x

x�
� diverges 8. 	

1
�
�
d
4

x

x�
� diverges

9. �1

�	
�
d
x
x
2� 1 10. 0

�	
�
(x �

dx
2)3� �1/8

11. �2

�	
�
x2

2
�

dx
1

� ln(3) 12. 	

2
�
x2

3
�

dx
x

� 3 ln(2)

13. 	

�1
�
x2 �

d
5
x
x � 6
� ln(2) 14. 0

�	
�
x2 �

2d
4
x
x �3
� ln(3)

15. 	

1
�
x
5
2
x
�

�

2
6
x

� dx diverges 16. �	

�2
�
x2

2
�

dx
2x

� �ln(2)

17. 	

1

xe�2x dx (3/4) e�2 18. 0

�	
x2ex dx 2

19. 	

1

x ln(x) dx diverges 20. 	

0

(x � 1)e�x dx 2

21. 	

�	
e��x� dx 2 22. 	

�	
2xe�x2 dx 0

23. 	

�	
�
ex �

dx
e�x� p/2 24. 	

�	
e2x dx diverges

In Exercises 25–30, (a) state why the integral is improper. Then 
(b) evaluate the integral or state that it diverges.

25. 2

0
�
1 �

dx
x2� See page 468. 26. 1

0
�
�1

d

�

x

x2�
� See page 468.

27. 1

0
�
�

x

x2

�

�

1

2�x�
� dx 28. 4

0
�
e

�

��

x�

x�
� dx See page 468.

29. 1

0

x ln(x)dx See page 468. 30. 4

�1
�
�

d

�
x

x��
� See page 468.

(a) lim
b→∞

b

0
�
x2

2
�

x
1

� dx

(b) ∞, diverges

(a) lim
b→	

b

1
�
x
d
1
x
/3�

(b) 	, diverges

3. (a) lim
b→−	

0

b
�
(x2

2
�

x
1)2� dx � lim

b→	
b

0
�
(x2

2
�

x
1)2� dx

(b) 0, converges

(a) lim
b→	

b

1
�
�

dx

x�
�

(b) 	, diverges

See page 468.

lim
x→∞

�
�
�

2

x

x

�

�

3�
1�

� � �2�
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In Exercises 31–34, use the Comparison Test to determine whether
the integral converges or diverges.

31. 	

1
�
1 �

dx
ex� See page 469. 32. 	

1
�
x3

d
�

x
1

� See page 469.

33. 	

p

�
2 �

x
cos x
� dx 34. 	

�	
�
�x

d
4

x

� 1�
� See page 469.

In Exercises 35–42, evaluate the integral or state that it diverges.

35. ln 2

0

y�2e1/y dy diverges 36. 4

0
�
�4

dr

� r�
� 4

37. 	

0

�
(1 �

d

s

s

)�s�
� p 38. 2

1
�
u�u

d
2

u

� 1�
� p/3

39. 	

0
�
16

1
t
�

an�

v2

1 v
� dv 2p2 40. 0

�	

ueu du �1

41. 2

0
�
1

d
�

t
t

� diverges 42. 1

�1

ln(�w�)dw �2

In Exercises 43 and 44, find the area of the region in the first
quadrant that lies under the given curve.

43. y � �
ln
x2

x
� 1 44. y � �

ln
x

x
� ∞

45. Group Activity
(a) Show that if f is an even function and the necessary integrals
exist, then

	

�	

f 	x
 dx � 2	

0

f 	x
 dx.

(b) Show that if f is odd and the necessary integrals 
exist, then

	

�	

f 	x
 dx � 0.

46. Writing to Learn

(a) Show that the integral 	

0

�
x
2
2
x
�

dx
1

� diverges.

(b) Explain why we can conclude from part (a) that 

	

�	

�
x
2
2
x
�

dx
1

� diverges.

(c) Show that lim
b→	

b

�b

�
x
2
2
x
�

dx
1

� � 0.

(d) Explain why the result in part (c) does not contradict part (b).

47. Finding Perimeter Find the perimeter of the 4-sided figure
x2�3 � y2�3 � 1. 6

Standardized Test Questions
You may use a graphing calculator to solve the following 
problems.

In Exercises 48 and 49, let f and g be continuous on [a, 	) with 
0  f (x)  g(x) for all x � a.

48. True or False If �	

a f (x)dx converges then �	

a g(x)dx
converges. Justify your answer. False. See Theorem 6.

49. True or False If �	

a g(x)dx converges then �	

a f (x)dx
converges. Justify your answer. True. See Theorem 6.

50. Multiple Choice Which of the following gives the value of

the integral 	

1
�
x
d
1.
x
01�? C

(A) 1 (B) 10 (C) 100 (D) 1000 (E) diverges

51. Multiple Choice Which of the following gives the value of 

the integral 1

0
�
x
d
0
x
.5�? B

(A) 1 (B) 2 (C) 3 (D) 4 (E) diverges

52. Multiple Choice Which of the following gives the value of

the integral 1

0
�
x

d
�

x
1

�? E

(A) �1 (B) �1�2 (C) 0 (D) 1 (E) diverges

53. Multiple Choice Which of the following gives the value of
the area under the curve y � 1/(x2 � 1) in the first quadrant? C

(A) p�4 (B) 1 (C) p�2 (D) p (E) diverges

Explorations

54. The Integral 	

1
�
d
x
x
p�.

(a) Evaluate the integral for p � 0.5. ∞, or diverges

(b) Evaluate the integral for p � 1. ∞, or diverges

(c) Evaluate the integral for p � 1.5. 2

(d) Show that 	

1
�
d
x
x
p� � lim

b→	 ��1 �

1
p

���bp

1
�1� � 1��

(e) Use part (d) to show that 	

1
�
d
x
x
p� � ��

p �

1
1

�, p � 1

	, p � 1.

(f) For what values of p does the integral converge? diverge?

25. (a) The integral has an infinite discontinuity at the interior point x � 1.
(b) diverges

26. (a) The integral has an infinite discontinuity at the endpoint x � 1.
(b) p/2

27. (a) The integral has an infinite discontinuity at the endpoint x � 0.
(b) �3�

28. (a) The integral has an infinite discontinuity at the endpoint x � 0.
(b) 2 � 2e�2

29. (a) The integral has an infinite discontinuity at the endpoint x � 0.
(b) �1/4

30. (a) The integral has an infinite discontinuity at the interior point x � 0.
(b) 6

See page 469.

converges for p � 1, diverges for p  1
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55. Each cross section of the solid infinite horn shown in the figure
cut by a plane perpendicular to the x-axis for �	 � x  ln 2 is a
circular disc with one diameter reaching from the x-axis to the
curve y � ex.

(a) Find the area of a typical cross section. A(x) � (p/4) e2x

(b) Express the volume of the horn as an improper integral.

(c) Find the volume of the horn. p/2

56. Normal Probability Distribution Function In Section 7.5,
we encountered the bell-shaped normal distribution curve that is
the graph of

f 	x
 � �
��

1

2��
�

� ( )2

,

the normal probability density function with mean m and
standard deviation s. The number m tells where the distribution
is centered, and s measures the “scatter” around the mean.

From the theory of probability, it is known that 

	

�	

f 	x
 dx � 1.

In what follows, let  m � 0  and  s � 1.

(a) Draw the graph of f. Find the intervals on which f is
increasing, the intervals on which f is decreasing, and any local
extreme values and where they occur.

(b) Evaluate n

�n

f 	x
 dx for n � 1, 2, 3.

(c) Give a convincing argument that 	

�	

f 	x
 dx � 1.

(Hint: Show that  0 � f 	x
 � e�x �2 for  x � 1, and for  b � 1,

	

b

e�x �2 dx→0 as b→	.)

57. Approximating the Value of �1
	 e�x2 dx

(a) Show that 	

6

e�x2 dx  	

6

e�6x dx � 4 � 10�17.

x � m
�

s

1
�
2

y

1

x

2

ln 2
0

y = ex

(b) Writing to Learn Explain why

	

1

e�x2 dx � 6

1

e�x2 dx

with error of at most 4 � 10�17.

(c) Use the approximation in part (b) to estimate the value of 
�1

	e�x2 dx. Compare this estimate with the value displayed in
Figure 8.19.

(d) Writing to Learn Explain why

	

0

e�x2 dx � 3

0

e�x2 dx

with error of at most 0.000042.

Extending the Ideas
58. Use properties of integrals to give a convincing argument that

Theorem 6 is true.

59. Consider the integral

f 	n � 1
 � 	

0

xne�x dx

where  n � 0.

(a) Show that  �0
	xne�x dx converges for  n � 0, 1, 2.

(b) Use integration by parts to show that f 	n � 1
 � nf 	n
.

(c) Give a convincing argument that  �0
	xne�x dx converges for

all integers  n � 0.

60. Let f 	x
 � x

0

�
sin

t
t

� dt.

(a) Use graphs and tables to investigate the values of f 	x

as  x→	.

(b) Does the integral  �0
		sin x
�x dx converge? Give a

convincing argument.

61. (a) Show that we get the same value for the improper integral in
Example 5 if we express

	

�	

�
1 �

dx
x2� � 1

�	

�
1 �

dx
x2� � 	

1

�
1 �

dx
x2� ,

and then evaluate these two integrals.

(b) Show that it doesn’t matter what we choose for c in
(Improper Integrals with Infinite Integration Limits, part 3)

	

�	

f 	x
 dx � c

�	
f 	x
 dx � 	

c

f 	x
 dx.

31. 0  �
1 �

1
ex�  �

e
1
x� on [1, 	), converges because 	

1
�
e
1
x� dx converges

32. 0  �
x3 �

1
1

�  �
x
1
3� on [1, 	), converges because 	

1
�
x
1
3� dx converges

33. 0  �
1
x

�  �
2 �

x
cos x
� on [p, 	), diverges because 	

p
�
1
x

� dx diverges

34. 	

�	
�
�x

d
4

x

� 1�
� � 2	

0
�
�x

d
4

x

� 1�
� � 21

0
�
�x

d
4

x

� 1�
� � 2	

1
�
�x

d
4

x

� 1�
� and

0  �
�x4

1

� 1�
�  �

x
1
2� on [1, 	), converges because 	

1
�
x
1
2� dx converges

55. (b) V � ln 2

�	
A(x)dx � ln 2

�	
(p/4) e2x dx
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470 Chapter 8 Sequences, L’Hôpital’s Rule, and Improper Integrals

Quick Quiz for AP* Preparation: Sections 8.3 and 8.4

You may use a graphing calculator to solve the following 
problems.

1. Multiple Choice Which of the following functions grows
faster than x2 as  x→	? E

(A) e�x (B) ln(x) (C) 7x � 10 (D) 2x2 � 3x (E) 0.1x3

2. Multiple Choice Find all the values of p for which the

integral converges 	

1
�
x
d
p�

x
1�. C

(A) p � �1 (B) p � 0 (C) p � 0

(D) p � 1 (E) diverges for all p

3. Multiple Choice Find all the values of p for which the 

integral converges 1

0
�
x
d
p�

x
1�. B

(A) p � �1 (B) p � 0 (C) p � 0

(D) p � 1 (E) diverges for all p

4. Free Response Consider the region R in the first quadrant 

under the curve y � �
2 ln

x2
(x)
�.

(a) Write the area of R as an improper integral.

(b) Express the integral in part (a) as a limit of a definite integral.

(c) Find the area of R.

Absolute Value Theorem for 
Sequences (p. 440)

arithmetic sequence (p. 436)

binary search (p. 456)

common difference (p. 436)

common ratio (p. 437)

comparison test (p. 464)

constant multiple rule for limits (p. 439)

convergence of improper integral (p. 459)

convergent sequence (p. 439)

difference rule for limits (p. 439)

divergence of improper integral (p. 459)

divergent sequence (p. 439)

explicitly defined sequence (p. 435)

finite sequence (p. 435)

geometric sequence (p. 437)

grows at the same rate (p. 453)

grows faster (p. 453)

grows slower (p. 453)

improper integral (pp. 459)

indeterminate form (p. 444)

infinite sequence (p. 435)

l’Hôpital’s Rule, first form (p. 444)

l’Hôpital’s Rule, stronger form (p. 445)

limit of a sequence (p. 439)

nth term of a sequence (p. 435)

product rule for limits (p. 439)

quotient rule for limits (p. 439)

recursively defined sequence (p. 435)

Sandwich Theorem for Sequences (p. 440)

sequence (p. 435)

sequential search (p. 456)

sum rule for limits (p. 439)

terms of sequence (p. 435)

transitivity of growing rates (p. 455)

value of improper integral (p. 459)

Chapter 8 Key Terms

Chapter 8 Review Exercises

The collection of exercises marked in red could be used as a Chapter
Test.

In Exercises 1 and 2, find the first four terms and the fortieth term of
the given sequence.

1. an � (�1)n �
n
n

�

�

1
3

� for all n � 1 �1�2, 3�5, �2�3, 5�7; a40 � 41/43

2. a1 � �3, an � 2an�1 for all n � 2 �3, �6, �12, �24; 

3. The sequence �1, 1/2, 2, 7/2, … is arithmetic. Find (a) the com-
mon difference, (b) the tenth term, and (c) an explicit rule for the
nth term.

4. The sequence 1/2, �2, 8, �32, … is geometric. Find (a) the
common ratio, (b) the seventh term, and (c) an explicit rule for
the nth term. (a) �4 (b) 2048 (c) an � (�1)n�1 (22n�3)

In Exercises 5 and 6, draw a graph of the sequence with given nth term.

5. an � �
2n�1 �

2n

(�1)n

�, n � 1, 2, 3, …

6. an � (�1)n�1 �
n�

n
1

�

In Exercises 7 and 8, determine the convergence or divergence of 
the sequence with given nth term. If the sequence converges, find its
limit.

7. an � �
3
2
n
n

2

2
�

�

1
1

� converges, 3/2 8. an � (�1)n �
3
n
n
�

�

2
1

�

In Exercises 9–22, find the limit.

9. lim
t→0

�
t � ln

t
	1

2
� 2t

� 10. lim

t→0
�
t
t
a
a
n
n

3
5
t
t

� 3/5

11. lim
x→0

�
1

x
�

si
c
n
os

x
x

� 2 12. lim
x→1

x1�	1�x
 1/e

13. lim
x→	

x1�x 1 14. lim
x→	 (1 � �

3
x

� )
x

e3

15. lim
r→	

�
c
l
o
n
s
r
r

� 0 16. lim
u→p�2 (u � �

p

2
� ) sec u �1

17. lim
x→1 (�x �

1
1

� � �
ln
1

x
� ) �1/2 18. lim

x→0� (1 � �
1
x

� )
x

1

a40 � �3(239)

(a) 3/2 (b) 25/2 (c) an � �
3n

2
� 5
�

diverges

9. The limit doesn’t exist.

5128_Ch08_434-471.qxd  1/13/06  1:20 PM  Page 470



Chapter 8 Review Exercises 471

19. lim
u→0�

	tan u
u 1 20. lim
u→	

u2 sin ( �
1
u

� ) 	

21. lim
x→	

�
x
2

3

x
�
2 �

3x
x

2

�

�

3
1

� 	 22. lim
x→	

�
3
x
x
4

2

�

�

x
x
3 �

�

2
1

� 0

In Exercises 23–34, determine whether f grows faster than, slower
than, or at the same rate as g as x→	. Give reasons for your answer.

23. f 	x
 � x, g	x
 � 5x 24. f 	x
 � log2 x, g	x
 � log3 x

25. f 	x
 � x, g	x
 � x � �
1
x

� 26. f 	x
 � �
10

x
0

� , g	x
 � xe�x

27. f 	x
 � x, g	x
 � tan�1 x 28. f 	x
 � csc�1 x, g	x
 � �
1
x

�

29. f 	x
 � x ln x, g	x
 � x log2 x 30. f 	x
 � 3�x, g	x
 � 2�x

31. f 	x
 � ln 2x, g	x
 � ln x2 Same rate, because lim
x→	

�
g
f (
(
x
x
)
)

� � �
1
2

�

32. f 	x
 � 10x3 � 2x2, g	x
 � ex
Slower, because lim

x→	
�
g
f (
(
x
x
)
)

� � 0

33. f 	x
 � tan�1 �
1
x

� , g	x
 � �
1
x

� Same rate, because lim
x→	

�
g
f (
(
x
x
)
)

� � 1

34. f 	x
 � sin�1 �
1
x

� , g	x
 � �
x
1
2� Faster, because lim

x→	
�
g
f (
(
x
x
)
)

� � 	

In Exercises 35 and 36,

(a) show that f has a removable discontinuity at x � 0. 

(b) define f at x � 0 so that it is continuous there.

35. f 	x
 � �
2
e

sin

x

x

�

�

1
1

� 36. f 	x
 � x ln x

In Exercises 37–48, evaluate the improper integral or state that it 
diverges.

37. 	

1
�
x
d
3
x
/2� 2 38. 	

1
�
x2 � 7

d
x
x

� 12
� ln (5�4)

39. �1

�	
�
3x

3
�

dx
x2� �2 ln (2) 40. 3

0
�
�9

d

�

x

x2�
� p�2

41. 1

0

ln(x) dx –1 42. 1

�1
�
y
d
2
y
/3� 6

43. 0

�2
�
(u �

du

1)3/5� 0 44. 	

3
�
x2

2
�

dx
2x

� ln (3)

45. 	

0

x2 e�x dx 2 46. 0

�	
xe3x dx �1�9

47. 	

�	
�
ex �

dx
e�x� p/2 48. 	

�	
�
x2

4
�

dx
16

� p

In Exercises 49 and 50, use the comparison test to determine whether
the improper integral converges or diverges.

49. 	

1
�
ln

z
z

� dz diverges 50. 	

1
�
�
e�

t�

t

� dt converges

51. The second and fifth terms of a geometric sequence are �3 and
�3/8, respectively. Find (a) the first term, (b) the common ratio,
and (c) an explicit formula for the nth term. (a) �6 (b) 1�2

52. The second and sixth terms of an arithmetric sequence are 11.5
and 5.5, respectively. Find (a) the first term, (b) the common 
difference, and (c) an explicit formula for the nth term.

53. Consider the improper �	
�	

e�2⏐x⏐ dx.

(a) Express the improper integral as a limit of definite integrals.

(b) Evaluate the integral.

54. Infinite Solid The infinite region bounded by the coordinate
axes and the curve  y � �ln x in the first quadrant (see figure) is
revolved about the x-axis to generate a solid. Find the volume of
the solid.

55. Infinite Region Find the area of the region in the first
quadrant under the curve  y � xe�x (see figure). 1

[0, 5] by [–0.5, 1]

[0, 2] by [–1, 5]

AP* Examination Preparation
You should solve the following problems without using 
a graphing calculator.

56. Consider the infinite region R in the first quadrant under the
curve y � xe�x/2.

(a) Write the area of R as an improper integral.

(b) Express the integral in part (a) as a limit of a definite integral.

(c) Find the area of R.

57. The infinite region in the first quadrant bounded by the coordi-

nate axes and the curve y � �
1
x

� � 1 is revolved about the y-axis to
generate a solid.

(a) Write the volume of the solid as an improper integral.

(b) Express the integral in part (a) as a limit of a definite integral.

(c) Find the volume of the solid.

58. Determine whether or not �
	

0 xe�x dx converges. If it converges,
give its value. Show your reasoning.

23. Same rate, because lim
x→	

�
g
f (
(
x
x
)
)

� � �
1
5

� 24. Same rate, because lim
x→	

�
g
f (
(
x
x
)
)

� � �
l
l
n
n

3
2

�

25. Same rate, because lim
x→	

�
g
f (
(
x
x
)
)

� � 1

26. Faster, because lim
x→	

�
g
f (
(
x
x
)
)

� � 	

27. Faster, because lim
x→	

�
g
f (
(
x
x
)
)

� � 	

28. Same rate, because lim
x→	

�
g
f (
(
x
x
)
)

� � 1 29. Slower, because lim
x→∞

�
g
f (
(
x
x
)
)

� � 0 30. Slower, because lim
x→∞

�
g
f (
(
x
x
)
)

� � 0

(c) an � �3(22�n)

52. (a) 13 (b) �1.5 (c) an � �1.5n � 14.5

(a) lim
b→�	

0

b
e2x dx � lim

b→	
b

0
e�2x dx (b) 1

2p
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