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Chapter

One mathematical constant crucial to the

analysis of the world is p. The p-series

�
p

6

2

� � 1 � �
2

1
2
� � �

3

1
2
� � �

4

1
2
� � �

5

1
2
� � …

approximates the value of p. The error, or remain-

der, of such an approximation is the difference 

between the actual sum and the nth partial sum.

For this p-series, the remainder is estimated by 

Rn � 1�n.

Shown here is a close-up of a high speed mi-

croprocessor chip. If a computer adds 1,000,000

terms of the p-series in one second, how many

places of accuracy will it achieve in 24 hours? 

Section 9.5 provides a discussion of p-series. 

Infinite Series9
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Section 9.1 Power Series 473

Chapter 9 Overview

One consequence of the early and dramatic successes that scientists enjoyed when using
calculus to explain natural phenomena was that there suddenly seemed to be no limits, so
to speak, on how infinite processes might be exploited. There was still considerable mys-
tery about “infinite sums” and “division by infinitely small quantities” in the years after
Newton and Leibniz, but even mathematicians normally insistent on rigorous proof were
inclined to throw caution to the wind while things were working. The result was a century
of unprecedented progress in understanding the physical universe. (Moreover, we can note
happily in retrospect, the proofs eventually followed.)

One infinite process that had puzzled mathematicians for centuries was the summing of
infinite series. Sometimes an infinite series of terms added to a number, as in

�
1
2

� � �
1
4

� � �
1
8

� � �
1
1
6
� � … � 1.

(You can see this by adding the areas in the “infinitely halved” unit
square at the right.) But sometimes the infinite sum was infinite, as in

�
1
1

� � �
1
2

� � �
1
3

� � �
1
4

� � �
1
5

� � … � �

(although this is far from obvious), and sometimes the infinite sum
was impossible to pin down, as in

1 � 1 � 1 � 1 � 1 � 1 � …

(Is it 0? Is it 1? Is it neither?).

Nonetheless, mathematicians like Gauss and Euler successfully used infinite series to derive
previously inaccessible results. Laplace used infinite series to prove the stability of the solar
system (although that does not stop some people from worrying about it today when they feel
that “too many” planets have swung to the same side of the sun). It was years later that care-
ful analysts like Cauchy developed the theoretical foundation for series computations, send-
ing many mathematicians (including Laplace) back to their desks to verify their results. 

Our approach in this chapter will be to discover the calculus of infinite series as the pio-
neers of calculus did: proceeding intuitively, accepting what works and rejecting what does
not. Toward the end of the chapter we will return to the crucial question of convergence and
take a careful look at it.

Power Series

Geometric Series
The first thing to get straight about an infinite series is that it is not simply an example of
addition. Addition of real numbers is a binary operation, meaning that we really add num-
bers two at a time. The only reason that 1 � 2 � 3 makes sense as “addition” is that we
can group the numbers and then add them two at a time. The associative property of addi-
tion guarantees that we get the same sum no matter how we group them:

1 � �2 � 3� � 1 � 5 � 6 and �1 � 2� � 3 � 3 � 3 � 6.

In short, a finite sum of real numbers always produces a real number (the result of a finite
number of binary additions), but an infinite sum of real numbers is something else entirely.
That is why we need the following definition.

9.1

What you’ll learn about

• Geometric Series

• Representing Functions by Series

• Differentiation and Integration

• Identifying a Series

. . . and why 

Power series are important in un-
derstanding the physical universe
and can be used to represent
functions.

1/2

1/4

1/8

1/16
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474 Chapter 9 Infinite Series

The partial sums of the series form a sequence

s1 � a1

s2 � a1 � a2

s3 � a1 � a2 � a3

...

sn � �
n

k�1

ak

...

of real numbers, each defined as a finite sum. If the sequence of partial sums has a limit S
as n→�, we say the series converges to the sum S, and we write

a1 � a2 � a3 � … � an � … � �
�

k�1

ak � S.

Otherwise, we say the series diverges.

EXAMPLE 1 Identifying a Divergent Series

Does the series  1 � 1 � 1 � 1 � 1 � 1 � … converge? 

SOLUTION

You might be tempted to pair the terms as

�1 � 1� � �1 � 1� � �1 � 1� � … .

That strategy, however, requires an infinite number of pairings, so it cannot be justified
by the associative property of addition. This is an infinite series, not a finite sum, so if
it has a sum it has to be the limit of its sequence of partial sums,

1, 0, 1, 0, 1, 0, 1, … .

Since this sequence has no limit, the series has no sum. It diverges.
Now try Exercise 7.

EXAMPLE 2 Identifying a Convergent Series

Does the series

�
1
3
0
� � �

1
3
00
� � �

10
3
00
� � … � �

1
3
0n� � …

converge?

SOLUTION

Here is the sequence of partial sums, written in decimal form.

0.3, 0.33, 0.333, 0.3333, …

This sequence has a limit 0.3J, which we recognize as the fraction 1�3. The series con-
verges to the sum 1�3. Now try Exercise 9.

DEFINITION Infinite Series

An infinite series is an expression of the form 

a1 � a2 � a3 � … � an � … , or �
�

k�1

ak .

The numbers a1, a2 , … are the terms of the series; an is the nth term.
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Section 9.1 Power Series 475

There is an easy way to identify some divergent series. In Exercise 62 you are asked to
show that whenever an infinite series ��

k�1 ak converges, the limit of the nth term as n→�
must be zero.

This means that if limk→� ak 	 0 the series must diverge.
The series in Example 2 is a geometric series because each term is obtained from its

preceding term by multiplying by the same number r—in this case, r � 1�10. (The series
of areas for the infinitely-halved square at the beginning of this chapter is also geometric.)
The convergence of geometric series is one of the few infinite processes with which math-
ematicians were reasonably comfortable prior to calculus. You may have already seen the
following result in a previous course.

This completely settles the issue for geometric series. We know which ones converge and
which ones diverge, and for the convergent ones we know what the sums must be. The inter-
val �1 
 r 
 1 is the interval of convergence.

EXAMPLE 3 Analyzing Geometric Series

Tell whether each series converges or diverges. If it converges, give its sum.

(a) �
�

n�1

3( �
1
2

� )n�1

(b) 1 � �
1
2

� � �
1
4

� � �
1
8

� � … � (��
1
2

� )n�1

� …

(c) �
�

k�0
( �

3
5

� )k

(d) �
p

2
� � �
p

4

2

� � �
p

8

3

� � …

SOLUTION

(a) First term is  a � 3  and  r � 1�2.  The series converges to 

�
1 �

3
�1�2�
� � 6.

(b) First term is  a � 1  and  r � �1�2.  The series converges to 

�
1 � �

1
�1�2�
� � �

2
3

� .
continued

If the infinite series

�
�

k�1

ak � a1 � a2 � … � ak � …

converges, then limk→� ak � 0.

The geometric series

a � ar � ar2 � ar 3 � … � ar n�1 � … � �
�

n�1

ar n�1

converges to the sum a��1 � r� if �r � 
 1, and diverges if �r � � 1.
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476 Chapter 9 Infinite Series

(c) First term is  a � �3�5�0 � 1  and  r � 3�5.  The series converges to 

�
1 �

1
�3�5�
� � �

5
2

�.

(d) In this series, r � p�2 � 1.  The series diverges. Now try Exercises 11 and 19.

We have hardly begun our study of infinite series, but knowing everything there is to
know about the convergence and divergence of an entire class of series (geometric) is an
impressive start. Like the Renaissance mathematicians, we are ready to explore where this
might lead. We are ready to bring in x. 

Representing Functions by Series
If �x � 
 1, then the geometric series formula assures us that 

1 � x � x2 � x3 � … � xn � … � �
1 �

1
x

� .

Consider this statement for a moment. The expression on the right defines a function
whose domain is the set of all numbers x 	 1. The expression on the left defines a func-
tion whose domain is the interval of convergence, �x � 
 1. The equality is understood to
hold only on this latter domain, where both sides of the equation are defined. On this
domain, the series represents the function 1��1 � x�.

The partial sums of the infinite series on the left are all polynomials, so we can graph
them (Figure 9.1). As expected, we see that the convergence is strong in the interval 
��1, 1� but breaks down when �x � � 1.

The expression ��
n�0 x n is like a polynomial in that it is a sum of coefficients times

powers of x, but polynomials have finite degrees and do not suffer from divergence for the
wrong values of x. Just as an infinite series of numbers is not a mere sum, this series of
powers of x is not a mere polynomial.

[–4.7, 4.7] by [–2, 4]

(a)

Partial Sums

[–4.7, 4.7] by [–2, 4]

(b)

y = 1/(1– x)

Figure 9.1 (a) Partial sums converging to
1��1 � x� on the interval (0, 1). The partial
sums graphed here are 1 � x � x2, 1 �
x � x2 � x3, and 1 � x � x2 � x3 � x4.
(b) Notice how the graphs in (a) resemble
the graph of 1��1 � x� on the interval 
��1, 1� but are not even close when �x � � 1.

The geometric series

�
�

n�0

xn � 1 � x � x2 � … � x n � …

is a power series centered at x � 0. It converges on the interval �1 
 x 
 1, also centered
at x � 0. This is typical behavior, as we will see in Section 9.4. A power series either con-
verges for all x, converges on a finite interval with the same center as the series, or con-
verges only at the center itself.

When we set x � 0 in the expression 

�
�

n�0

cn xn � c0 � c1 x � c2 x2 �

… � cn xn � … ,

we get c0 on the right but c0 • 00 on the

left. Since 00 is not a number, this is a

slight flaw in the notation, which we

agree to overlook. The same situation

arises when we set

x � a in �
�

n�0

cn (x � a)n.

In either case, we agree that the expres-

sion will equal c0. (It really should equal

c0, so we are not compromising the

mathematics; we are clarifying the nota-

tion we use to convey the mathematics.)

DEFINITION Power Series

An expression of the form

�
�

n�0

cnx n � c0 � c1x � c2x2 � … � cnx n � …

is a power series centered at  x � 0. An expression of the form

�
�

n�0

cn�x � a�n � c0 � c1�x � a� � c2�x � a�2 � … � cn�x � a�n � …

is a power series centered at  x � a. The term  cn�x � a�n is the nth term;
the number a is the center.
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Section 9.1 Power Series 477

Differentiation and Integration
So far we have only represented functions by power series that happen to be geometric. The
partial sums that converge to those power series, however, are polynomials, and we can
apply calculus to polynomials. It would seem logical that the calculus of polynomials (the
first rules we encountered in Chapter 3) would also apply to power series. 

EXAMPLE 4 Finding a Power Series by Differentiation

Given that  1��1 � x� is represented by the power series

1 � x � x2 � … � x n � …

on the interval ��1, 1�, find a power series to represent  1��1 � x�2.

SOLUTION

Notice that  1��1 � x�2 is the derivative of  1��1 � x�.  To find the power series, we dif-
ferentiate both sides of the equation

�
1 �

1
x

� � 1 � x � x2 � x3 � … � x n � … .

�
d
d
x
� (�1 �

1
x

�) � �
d
d
x
� �1 � x � x2 � x3 � … � x n � …�

�
�1 �

1
x�2� � 1 � 2x � 3x2 � 4x3 � … � nx n�1 � …

Finding Power Series for Other Functions

Given that  1��1 � x� is represented by the power series

1 � x � x2 � … � x n � …

on the interval ��1, 1�,

1. find a power series that represents  1��1 � x� on  ��1, 1�.
2. find a power series that represents  x��1 � x� on  ��1, 1�.
3. find a power series that represents  1��1 � 2x� on  ��1�2, 1�2).

4. find a power series that represents 

�
1
x

� � �
1 � �

1
x � 1�
�

on  �0, 2�.

Could you have found the intervals of convergence yourself? 

5. Find a power series that represents 

�
3
1
x
� � �

1
3

� • (�1 � �
1
x � 1�
�)

and give its interval of convergence. 

EXPLORATION 1

We have seen that the power series ��
n�0 xn represents the function 1��1 � x� on the

domain ��1, 1�. Can we find power series to represent other functions?

continued
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478 Chapter 9 Infinite Series

What about the interval of convergence? Since the original series converges for  �1 

x 
 1, it would seem that the differentiated series ought to converge on the same open
interval. Graphs (Figure 9.2) of the partial sums 1 � 2x � 3x2, 1 � 2x � 3x2 � 4x3,
and  1 � 2x � 3x2 � 4x3 � 5x4 suggest that this is the case (although such empirical
evidence does not constitute a proof). Now try Exercise 27.

The basic theorem about differentiating power series is the following.

THEOREM 1 Term-by-Term Differentiation

If  f �x� � �
�

n�0

cn�x � a�n � c0 � c1�x � a� � c2�x � a�2 � … � cn�x � a�n � …

converges for  �x � a � 
 R, then the series 

�
�

n�1

ncn�x � a�n�1 � c1 � 2c2�x � a� � 3c3�x � a�2 � … � ncn�x � a�n�1 � … ,

obtained by differentiating the series for f term by term, converges for  �x � a� 
 R
and represents f 
�x� on that interval. If the series for f converges for all x, then so
does the series for f 
.

[–4.7, 4.7] by [–2, 4]

(a)

Partial Sums

[–4.7, 4.7] by [–2, 4]

(b)

y = 1/(1– x)2

Figure 9.2 (a) The polynomial partial
sums of the power series we derived for 
(b) 1��1 � x�2 seem to converge on the
open interval ��1, 1�. (Example 4)

continued

Theorem 1 says that if a power series is differentiated term by term, the new series
will converge on the same interval to the derivative of the function represented by the
original series. This gives a way to generate new connections between functions and
series.

Another way to reveal new connections between functions and series is by integration.

EXAMPLE 5 Finding a Power Series by Integration

Given that 

�
1 �

1
x

� � 1 � x � x2 � x3 � … � ��x�n � …, �1 
 x 
 1

(Exploration 1, part 1), find a power series to represent  ln �1 � x�.

SOLUTION

Recall that  1��1 � x� is the derivative of ln �1 � x�.  We can therefore integrate the
series for  1��1 � x� to obtain a series for ln �1 � x� (no absolute value bars are neces-
sary because  �1 � x� is positive for �1 
 x 
 1).

�
1 �

1
x

� � 1 � x � x2 � x3 � … � ��x�n � …

� 1 � x � x2 � x3 � … � ��1�nx n � …

�x

0

�
1 �

1
t

� dt � �x

0

�1 � t � t2 � t3 � … � ��1�nt n � …� dt

ln �1 � t�] x

0

� [ t � �
t
2

2

� � �
t
3

3

� � �
t
4

4

� � … � ��1�n�
n
tn

�

�1

1
� � … ] x

0

ln �1 � x� � x � �
x
2

2

� � �
x
3

3

� � �
x
4

4

� � … � ��1�n�
n
x
�

n�1

1
� � …

t is a dummy
variable.
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THEOREM 2 Term-by-Term Integration

If f �x� � �
�

n�0

cn�x � a�n � c0 � c1�x � a� � c2�x � a�2 � … � cn�x � a�n � …

converges for �x � a� 
 R, then the series 

�
�

n�0

cn�
�x

n
�

�

a�
1

n�1

� � c0�x � a� � c1�
�x �

2
a�2

� � c2�
�x �

3
a�3

� �

… � cn�
�x

n
�

�

a�
1

n�1

� � … ,

obtained by integrating the series for f term by term, converges for  �x � a� 
 R
and represents  � x

a
f �t� dt on that interval. If the series for f converges for all x,

then so does the series for the integral.

It would seem logical for the new series to converge where the original series con-
verges, on the open interval ��1, 1�. The graphs of the partial sums in Figure 9.3 sup-
port this idea. Now try Exercise 33.

[–5, 5] by [–3, 3]

(a)

Partial Sums

[–5, 5] by [–3, 3]

(b)

y � ln�1 � x�

Figure 9.3 (a) The graphs of the partial sums

x � �
x
2

2

� , x � �
x
2

2

� � �
x
3

3

� , and x � �
x
2

2

� � �
x
3

3

� � �
x
4

4

�

closing in on (b) the graph of ln �1 � x� over the interval ��1, 1�. (Example 5)Some calculators have a sequence

mode that enables you to generate a

sequence of partial sums, but you can

also do it with simple commands on the

home screen. Try entering the two 

multiple-step commands shown on the

first screen below.

If you are successful, then every time

you hit ENTER, the calculator will dis-

play the next partial sum of the series 

1 � �
1

2
� � �

1

3
� � �

1

4
� � … � �

n

��
�

1�
1

n

� � ….

The second screen shows the result 

of about 80 ENTERs. The sequence 

certainly seems to be converging to 

ln 2 � 0.6931471806….

.6997694067
.686611512

.699598525

.6867780122
.69943624
.68693624
.699281919

0   N: 1   T

N+1   N: T+(–1)^N/(
N+1)   T

1

.5

The idea that the integrated series in Example 5 converges to ln �1 � x� for all x
between �1 and 1 is confirmed by the following theorem.

Theorem 2 says that if a power series is integrated term by term, the new series will con-
verge on the same interval to the integral of the function represented by the original series.

There is still more to be learned from Example 5. The original equation

�
1 �

1
x

� � 1 � x � x2 � x3 � … � ��x�n � …

clearly diverges at x � 1 (see Example 1). The behavior is not so apparent, however, for the
new equation

ln �1 � x� � x � �
x
2

2

� � �
x
3

3

� � �
x
4

4

� � … � ��1�n �
n
x
�

n�1

1
� � … .
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480 Chapter 9 Infinite Series

If we let x � 1 on both sides of the previous equation, we get

ln 2 � 1 � �
1
2

� � �
1
3

� � �
1
4

� � … � �
n
��

�

1�
1

n

� � … ,

which looks like a reasonable statement. It looks even more reasonable if you look at the
partial sums of the series and watch them converge toward ln 2 (see margin note). It would
appear that our new series converges at 1 despite the fact that we obtained it from a series
that did not! This is all the more reason to take a careful look at convergence later.
Meanwhile, we can enjoy the observation that we have created a series that apparently
works better than we might have expected and better than Theorem 2 could guarantee.

Finding a Power Series for tan�1 x

1. Find a power series that represents  1��1 � x2� on  ��1, 1�.
2. Use the technique of Example 5 to find a power series that represents  tan�1 x

on  ��1, 1�.
3. Graph the first four partial sums. Do the graphs suggest convergence on the

open interval  ��1, 1�?
4. Do you think that the series for  tan�1 x converges at  x � 1?  Can you support

your answer with evidence?

EXPLORATION 2

A Series with a Curious Property

Define a function f by a power series as follows:

f �x� � 1 � x � �
x
2!

2

� � �
x
3!

3

� � �
x
4

4

!
� � … � �

n
xn

!
� � … .

1. Find  f 
�x�.
2. Find f �0�.
3. What well-known function do you suppose f is?

4. Use your responses to parts 1 and 2 to set up an initial value problem that 
the function f must solve. You will need a differential equation and an initial
condition.

5. Solve the initial value problem to prove your conjecture in part 3. 

6. Graph the first three partial sums. What appears to be the interval of convergence?

7. Graph the next three partial sums. Did you underestimate the interval of 
convergence? 

EXPLORATION 3

Identifying a Series
So far we have been finding power series to represent functions. Let us now try to find the
function that a given power series represents.

The correct answer to part 7 in Exploration 3 above is “yes,” unless you had the keen
insight (or reckless bravado) to answer “all real numbers” in part 6. We will prove the
remarkable fact that this series converges for all x when we revisit the question of conver-
gence of this series in Section 9.3, Example 4.
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In Exercises 1 and 2, find the first four terms and the 30th term of
the sequence

{un}
�
n�1 � {u1, u2, … , un , …}.

1. un � �
n �

4
2

� 4/3, 1, 4/5, 2/3, 1/8 2. un � �
��

n
1�n

�

In Exercises 3 and 4, the sequences are geometric �an�1 �an � r,
a constant). Find 

(a) the common ratio r. (b) the tenth term.

(c) a rule for the nth term.

3. {2, 6, 18, 54, …} 4. {8, �4, 2, �1, …}

In Exercises 5–10,

(a) graph the sequence {an}.

(b) determine lim
n→�

an.

5. an � �
1

n
�

2
n

� (b) 0 6. an � (1 � �
1
n

� )n

(b) e

7. an � ��1�n 8. an � �
1
1

�

�

2
2

n
n

� (b) �1

9. an � 2 � �
1
n

� (b) 2 10. an � �
ln �n

n
� 1�
� (b) 0

Quick Review 9.1 (For help, go to Section 8.1.)

Section 9.1 Exercises

1. Replace the * with an expression that will generate the series

1 � �
1
4

� � �
1
9

� � �
1
1
6
� � … .

(a) �
�

n�1

��1�n�1( �
1

*
� ) * � n2 (b) �

�

n�0

��1�n ( �
1

*
� )

(c) �
�

n�*

��1�n (��n �

�1
2�2� ) * � 3

2. Write an expression for the nth term, an .

(a) �
�

n�0

an � 1 � �
1
3

� � �
1
9

� � �
2
1
7
� � �

8
1
1
� � … ��

1
3

��n

(b) �
�

n�1

an � 1 � �
1
2

� � �
1
3

� � �
1
4

� � �
1
5

� � … �
(�1

n
)n�1

�

(c) �
�

n�0

an � 5 � 0.5 � 0.05 � 0.005 � 0.0005 � … �
1
5
0n�

In Exercises 3–6, tell whether the series is the same as

�
�

n�1
(� �

1
2

� )n�1

.

3. �
�

n�1

�( �
1
2

� )n�1

Different 4. �
�

n�0
(� �

1
2

� )n

Same

5. �
�

n�0

��1�n ( �
1
2

� )n

Same 6. �
�

n�1

�
�
2
�

n

1
�

�
1

n

� Different

In Exercises 7–10, compute the limit of the partial sums to determine
whether the series converges or diverges.

7. 1 � 1.1 � 1.11 � 1.111 � 1.1111 � … Diverges

8. 2 � 1 � 1 � 1 � 1 � 1 � … Diverges

9. �
1

2
� � �

1

4
� � �

1

8
� � … � �

2

1
k
� � … Converges

10. 3 � 0.5 � 0.05 � 0.005 � 0.0005 � … Converges

In Exercises 11–20, tell whether the series converges or diverges. If
it converges, give its sum. 

11. 1 � �
2
3

� � ( �
2
3

� )2

� ( �
2
3

� )3

� … � ( �
2
3

� )n

� … Converges; sum � 3

12. 1 � 2 � 3 � 4 � 5 � … � ��1�n�n � 1� � … Diverges

13. �
�

n�0
( �

5
4

� )( �
2
3

� )n

14. �
�

n�0
( �

2
3

� )( �
5
4

� )n

Diverges

15. �
�

n�0

cos �np� Diverges

16. 3 � 0.3 � 0.03 � 0.003 � 0.0003 � … � 3��0.1�n � …

17. �
�

n�0

sinn ( �
p

4
� � np ) Converges; sum � 2 � �2	

18. �
1
2

� � �
2
3

� � �
3
4

� � �
4
5

� � … � �
n �

n
1

� � … Diverges

19. �
�

n�1
( �
p

e
� )n

20. �
�

n�0

�
6
5
n�

n

1� Converges; sum � 1

In Exercises 21–24, find the interval of convergence and the function
of x represented by the geometric series.

21. �
�

n�0

2nx n 22. �
�

n�0

��1�n�x � 1�n

23. �
�

n�0
(� �

1
2

� )n

�x � 3�n 24. �
�

n�0

3(�x �

2
1

� )n

In Exercises 25 and 26, find the values of x for which the geometric
series converges and find the function of x it represents.

25. �
�

n�0

sinn x 26. �
�

n�0

tann x

In Exercises 27–30, use the series and the function f (x) that it represents
from the indicated exercise to find a power series for f
(x).

27. Exercise 21 28. Exercise 22

29. Exercise 23 30. Exercise 24

�1, 1/2, �1/3, 1/4, 1/30

(a) 3 (b) 39,366 (c) an � 2(3n�1) (a) �1/2 (b) �1/64
(c) an � 8(�1/2)n�1 � 8(�0.5)n�1

(b) The limit does 
not exist.

* � (n � 1)2

Converges; sum � 15/4

Converges; sum � 30/11

Converges; sum � �
� �

e
e

�
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482 Chapter 9 Infinite Series

In Exercises 31–34, use the series and the function f (x) that it
represents from the indicated exercise to find a power series for

�
x

0
f (t) dt.

31. Exercise 21 32. Exercise 22

33. Exercise 23 34. Exercise 24

35. Writing to Learn Each of the following series diverges 
in a slightly different way. Explain what is happening to the
sequence of partial sums in each case. 

(a) �
�

n�1

2n (b) �
�

n�0

��1�n (c) �
�

n�1

��1�n �2n�

36. Prove that  �
�

n�0

�
p

en

n

p

e� diverges.

37. Solve for x: �
�

n�0

x n � 20. x � 19/20

38. Writing to Learn Explain how it is possible, given any real
number at all, to construct an infinite series of non-zero terms
that converges to it.

39. Make up a geometric series  �ar n�1 that converges to the
number 5 if

(a) a � 2 (b) a � 13�2

In Exercises 40 and 41, express the repeating decimal as a geometric
series and find its sum.

40. 0.21J 41. 0.234J

In Exercises 42–47, express the number as the ratio of two integers.

42. 0.7J � 0.7777… 7/9

43. 0.dJ � 0.dddd… , where d is a digit d/9

44. 0.06J � 0.06666… 1/15 45. 1.414J � 1.414 414 414…

46. 1.24123J � 1.24 123 123 123… 41,333/33,300

47. 3.1J42857JJ � 3.142857 142857… 22/7

48. Bouncing Ball A ball is dropped from a height of 4 m. Each
time it strikes the pavement after falling from a height of h m, it
rebounds to a height of 0.6h m. Find the total distance the ball
travels up and down. 16 meters

49. (Continuation of Exercise 48) Find the total number of
seconds that the ball in Exercise 48 travels. (Hint: A freely
falling ball travels 4.9t2 meters in t seconds, so it will fall h
meters in �h	�4	.9	 seconds. Bouncing from ground to apex 
takes the same time as falling from apex to ground.)

50. Summing Areas The figure below shows the first five of 
an infinite sequence of squares. The outermost square has an
area of 4 m2. Each of the other squares is obtained by joining
the midpoints of the sides of the preceding square. Find the sum 
of the areas of all the squares. 8 m2

51. Summing Areas The accompanying figure shows the first
three rows and part of the fourth row of a sequence of rows of
semicircles. There are 2n semicircles in the nth row, each of
radius 1��2n�. Find the sum of the areas of all the semicircles.

52. Sum of a Finite Geometric Progression Let a and r be
real numbers with  r 	 1, and let

S � a � ar � ar2 � ar3 � … � ar n�1.

(a) Find  S � rS. S � rS � a � arn

(b) Use the result in part (a) to show that S � �
a
1
�

�

a
r
rn

� .

53. Sum of a Convergent Geometric Series Exercise 52
gives a formula for the nth partial sum of an infinite geometric
series. Use this formula to show that ��

n�1 ar n�1 diverges when
�r � � 1 and converges to a��1 � r� when  �r � 
 1.

In Exercises 54–59, find a power series to represent the given function
and identify its interval of convergence. When writing the power series,
include a formula for the nth term.

54. �
1 �

1
3x

� 55. �
1 �

x
2x

�

56. �
1 �

3
x3� 57. �

1 � �
1
x � 4�
�

58. �
4
1
x
� � �

1
4

� (�1 � �
1
x � 1�
� ) 59. �

2 �

1
x

� (Hint: Rewrite 2 � x.)

1/2

1/4

1/8

(a) 

�

n�1

2��
3
5

��
n�1

(b) 

�

n�1

�
1
2
3
� ���

1
3
0
��

n�1

157/111

�7.113 seconds

��2

Just factor and divide by 1 � r.
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Section 9.1 Power Series 483

60. Find the value of b for which  1 � eb � e2b � e3b � … � 9.

61. Let S be the series �
�

n�0
(�1 �

t
t

� )n

, t 	 0.

(a) Find the value to which S converges when  t � 1. 2

(b) Determine all values of t for which S converges. t � �1/2

(c) Find all values of t that make the sum of S greater than 10.

62. nth Term Test Assume that the series ��
k�1 ak converges to S.

(a) Writing to Learn Explain why limn→� �k�n
k�1 ak � S.

(b) Show that Sn � Sn�1 � an, where Sn denotes the nth partial
sum of the series.

(c) Show that limn→� an � 0.

63. A Series for ln x Starting with the power series found for 1�x
in Exploration 1, Part 4, find a power series for ln x centered 
at  x � 1.

64. Differentiation Use differentiation to find a series for  
f �x� � 2��1 � x�3. What is the interval of convergence of 
your series?

65. Group Activity Intervals of Convergence How much
can the interval of convergence of a power series be changed by
integration or differentiation? To be specific, suppose that the
power series

f �x� � c0 � c1x � c2 x2 � … � cn x n � …

converges for �1 
 x 
 1  and diverges for all other values of x.

(a) Writing to Learn Could the series obtained by integrating
the series for f term by term possibly converge for �2 
 x 
 2?
Explain. (Hint: Apply Theorem 1, not Theorem 2.)

(b) Writing to Learn Could the series obtained by
differentiating the series for f term by term possibly converge
for  �2 
 x 
 2?  Explain.

Standardized Test Questions
You should solve the following problems without using 
a graphing calculator.

66. True or False The series 

�
1

2
� � �

1.

2

01
� � �

(1.0

2

1)2

� � … � �
(1.0

2

1)n

� � …

converges. Justify your answer.

67. True or False The series 1 � �
1

2
� � �

1

4
� � �

1

8
� � �

1

1

6
� � …

diverges. Justify your answer.

68. Multiple Choice To which of the following numbers does 

the series 1 � �
1

3
� � �

1

9
� � �

2

1

7
� � … converge? C

(A) 2�3 (B) 9�8 (C) 3�2 (D) 2 (E) It diverges

In Exercises 69–71, use the geometric series ��
n�0 (x � 1)n, which

represents the function f (x).

69. Multiple Choice Find the values of x for which the series
converges. A

(A) 0 
 x 
 2 (B) 0 
 x 
 1 (C) �1 
 x 
 0

(D) �1 
 x 
 1 (E) �2 
 x 
 0

70. Multiple Choice Which of the following is the function that
the power series represents? E

(A) �
x �

1

1
� (B) �

1 �

1

2x
� (C) ��

1

x
� (D) �

x �

1

2
� (E) �

2 �

1

x
�

71. Multiple Choice Which of the following is a function that 

�
x

0
f (t) dt represents? D

(A) �ln ��x �

2

2
�� (B) ln ��x �

2

2
�� (C) �

(x �

1

2)2
�

(D) �ln ���x �

2

2�
�� (E) ln ���x �

2

2�
��

Exploration

72. Let f �t� � �
1 �

4
t2� and G�x� � �x

0

f �t� dt.

(a) Find the first four nonzero terms and the general term for a
power series for f �t� centered at  t � 0.

(b) Find the first four nonzero terms and the general term for a
power series for  G�x� centered at x � 0.

(c) Find the interval of convergence of the power series in part (a).

(d) The interval of convergence of the power series in part (b) is
almost the same as the interval in part (c), but includes two more
numbers. What are the numbers?

Extending the Ideas
The sequence {an} converges to the number L if to every positive
number e there corresponds an integer N such that for all n,

n � N ⇒ �an � L � 
 e.

L is the limit of the sequence and we write  limn→� an � L.  If no
such number L exists, we say that {an} diverges.

73. Tail of a Sequence Prove that if {an} is a convergent
sequence, then to every positive number e there corresponds 
an integer N such that for all m and n,

m � N and n � N ⇒ �am � an � 
 e.

(Hint: Let  limn→� an � L.  As the terms approach L, how far
apart can they be?)

74. Uniqueness of Limits Prove that limits of sequences are
unique. That is, show that if L1 and L2 are numbers such that
limn→� an � L1 and  limn→� an � L2, then  L1 � L2.

75. Limits and Subsequences Prove that if two subsequences 
of a sequence {an} have different limits  L1 	 L2, then {an}
diverges.

76. Limits and Asymptotes

(a) Show that the sequence with nth term an � �3n � 1���n � 1�
converges.

(b) If  limn→� an � L, explain why  y � L is a horizontal
asymptote of the graph of the function

f �x� � �
3
x
x
�

�

1
1

�

obtained by replacing n by x in the nth term.

b � ln(8/9)

t � 9

x � �
(x �

2
1)2

� � �
(x �

3
1)3

� � ��� � �
(�1)n�1

n
(x � 1)n

�� ���

64. Series: 2 � 6x � 12x2 � (n � 2)(n � 1)xn � ���

Interval: �1 
 x 
 1

False. It diverges because it is a 
geometric series with ratio 1.01 that 
is greater than 1.

False. It converses because it is a geometric
series with ratio 1/2 that is less than 1.
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484 Chapter 9 Infinite Series

Taylor Series

Constructing a Series
A comprehensive understanding of geometric series served us well in Section 9.1, enabling us
to find power series to represent certain functions, and functions that are equivalent to certain
power series (all of these equivalencies being subject to the condition of convergence). In this
section we learn a more general technique for constructing power series, one that makes good
use of the tools of calculus.

Let us start by constructing a polynomial.

9.2

What you’ll learn about

• Constructing a Series

• Series for sin x and cos x

• Beauty Bare

• Maclaurin and Taylor Series

• Combining Taylor Series

• Table of Maclaurin Series

. . . and why 

The partial sums of a Taylor se-
ries are polynomials that can be
used to approximate the function
represented by the series.

Designing a Polynomial to Specifications

Construct a polynomial  P�x� � a0 � a1x � a2x2 � a3x3 � a4x4 with the follow-
ing behavior at x � 0:

P�0� � 1,

P
�0� � 2,

P��0� � 3,

P��0� � 4, and

P �4��0� � 5.

This task might look difficult at first, but when you try it you will find that the pre-
dictability of differentiation when applied to polynomials makes it straightforward.
(Be sure to check this out before you move on.)

EXPLORATION 1

There is nothing special about the number of derivatives in Exploration 1. We could
have prescribed the value of the polynomial and its first n derivatives at x � 0 for any n
and found a polynomial of degree at most n to match. Our plan now is to use the technique
of Exploration 1 to construct polynomials that approximate functions by emulating their
behavior at 0.

EXAMPLE 1 Approximating ln (1 � x) by a Polynomial

Construct a polynomial  P�x� � a0 � a1x � a2x2 � a3x3 � a4x4 that matches the
behavior of  ln �1 � x� at x � 0  through its first four derivatives. That is,

P�0� � ln �1 � x� at  x � 0,

P
�0� � �ln �1 � x��
 at  x � 0,

P��0� � �ln �1 � x��� at  x � 0,

P��0� � �ln �1 � x��� at  x � 0, and

P �4��0� � �ln �1 � x���4� at  x � 0.

SOLUTION

This is just like Exploration 1, except that first we need to find out what the numbers are.

P�0� � ln �1 � x� |
x�0

� 0

P
�0� � �
1 �

1
x

� |
x�0

� 1
continued
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Section 9.2 Taylor Series 485

P��0� � ��
�1 �

1
x�2� |

x�0

� �1

P��0� � �
�1 �

2
x�3� |

x�0

� 2

P �4��0� � ��
�1 �

6
x�4� |

x�0

� �6

In working through Exploration 1, you probably noticed that the coefficient of the term
xn in the polynomial we seek is P �n��0� divided by n!. The polynomial is

P�x� � 0 � x � �
x
2

2

� � �
x
3

3

� � �
x
4

4

� .
Now try Exercise 1.

We have just constructed the fourth order Taylor polynomial for the function 
ln �1 � x� at x � 0. You might recognize it as the beginning of the power series we dis-
covered for ln �1 � x� in Example 5 of Section 9.1, when we came upon it by integrat-
ing a geometric series. If we keep going, of course, we will gradually reconstruct that
entire series one term at a time, improving the approximation near x � 0 with every
term we add. The series is called the Taylor series generated by the function ln �1 � x�
at x � 0.

You might also recall Figure 9.3, which shows how the polynomial approximations con-
verge nicely to ln �1 � x� near x � 0, but then gradually peel away from the curve as x gets
farther away from 0 in either direction. Given that the coefficients are totally determined
by specifying behavior at x � 0, that is exactly what we ought to expect.

Series for sin x and cos x
We can use the technique of Example 1 to construct Taylor series about x � 0 for any func-
tion, as long as we can keep taking derivatives there. Two functions that are particularly
well-suited for this treatment are the sine and cosine.

EXAMPLE 2 Constructing a Power Series for sin x

Construct the seventh order Taylor polynomial and the Taylor series for sin x
at x � 0.

SOLUTION

We need to evaluate  sin x and its first seven derivatives at  x � 0.  Fortunately, this is
not hard to do.

sin �0� � 0

sin
�0� � cos �0� � 1

sin��0� � �sin �0� � 0

sin��0� � �cos �0�� �1

sin�4��0� � sin �0� � 0

sin�5��0� � cos �0� � 1

...

The pattern 0, 1, 0, �1 will keep repeating forever. continued

5128_Ch09_pp472-529.qxd  1/13/06  3:44 PM  Page 485



486 Chapter 9 Infinite Series

The unique seventh order Taylor polynomial that matches all these derivatives 
at x � 0  is

P7 �x� � 0 � 1x � 0x2 � �
3
1
!
� x3 � 0x4 � �

5
1
!
� x5 � 0x6 � �

7
1
!
� x7

� x � �
x
3!

3

� � �
x
5!

5

� � �
x
7!

7

� .

P7 is the seventh order Taylor polynomial for sin x at x � 0. (It also happens to be of
seventh degree, but that does not always happen. For example, you can see that P8 for
sin x will be the same polynomial as P7 .)

To form the Taylor series, we just keep on going:

x � �
x
3!

3

� � �
x
5!

5

� � �
x
7!

7

� � �
x
9!

9

� � … �  �
�

n�0

��1�n�
�2

x
n

2

�

n�

1

1

�!
� .

Now try Exercise 3.

Beauty Bare
Edna St. Vincent Millay, an early twentieth-century American poet, referring to the experience
of simultaneously seeing and understanding the geometric underpinnings of nature, wrote
“Euclid alone has looked on Beauty bare.” In case you have never experienced that sort of
reverie when gazing upon something geometric, we intend to give you that opportunity now.

In Example 2 we constructed a power series for sin x by matching the behavior of sin x
at x � 0. Let us graph the first nine partial sums together with y � sin x to see how well
we did (Figure 9.4). 

Behold what is occurring here! These polynomials were constructed to mimic the
behavior of sin x near x � 0. The only information we used to construct the coefficients of
these polynomials was information about the sine function and its derivatives at 0. Yet,
somehow, the information at x � 0 is producing a series whose graph not only looks like
sine near the origin, but appears to be a clone of the entire sine curve. This is no deception,
either; we will show in Section 9.3, Example 3 that the Taylor series for sin x does, in fact,
converge to sin x over the entire real line. We have managed to construct an entire function
by knowing its behavior at a single point! (The same is true about the series for cos x
found in Exploration 2.)

We still must remember that convergence is an infinite process. Even the one-billionth
order Taylor polynomial begins to peel away from sin x as we move away from 0, although
imperceptibly at first, and eventually becomes unbounded, as any polynomial must.
Nonetheless, we can approximate the sine of any number to whatever accuracy we want if
we just have the patience to work out enough terms of this series!

This kind of dramatic convergence does not occur for all Taylor series. The Taylor poly-
nomials for ln �1 � x� do not converge outside the interval from �1 to 1, no matter how
many terms we add. 

A Power Series for the Cosine

Group Activity

1. Construct the sixth order Taylor polynomial and the Taylor series at  x � 0
for cos x.

2. Compare your method for attacking part 1 with the methods of other groups.
Did anyone find a shortcut?

EXPLORATION 2
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Maclaurin and Taylor Series
If we generalize the steps we followed in constructing the coefficients of the power series
in this section so far, we arrive at the following definition.

x

y y1 = x

y = sin x

(a)

x

y

(b)

y2 = y1 –
x3

3!

x

y

(c)

y3 = y2 +
x5

5!

x

y

(d)

y4 = y3 –
x7

7!

x

y

(e)

y5 = y4 +
x9

9!

x

y

(f)

y6 = y5 –
x11

11!

x

y

(g)

y7 = y6 + x
13

13!

x

y

(h)

y8 = y7  – x15

15!

x

y

(i)

y9 = y8  + x
17

17!

Figure 9.4 y � sin x and its nine Taylor polynomials P1, P3, … , P17 for �2p � x � 2p. Try graphing these functions in the 
window ��2p, 2p
 by ��5, 5
.

DEFINITION Taylor Series Generated by f at x � 0 
(Maclaurin Series)

Let f be a function with derivatives of all orders throughout some open interval
containing 0. Then the Taylor series generated by f at x � 0 is

f �0� � f 
�0�x � �
f �

2
�
!
0�
�x2 � … � �

f �n

n

��
!
0�

�x n � … � �
�

k�0

�
f �k

k

��
!
0�

�xk.

This series is also called the Maclaurin series generated by f. continued
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488 Chapter 9 Infinite Series

We use f �0� to mean f. Every power series constructed in this way converges to the func-
tion f at x � 0, but we have seen that the convergence might well extend to an interval con-
taining 0, or even to the entire real line. When this happens, the Taylor polynomials that form
the partial sums of a Taylor series provide good approximations for f near 0.

EXAMPLE 3 Approximating a Function Near 0

Find the fourth order Taylor polynomial that approximates  y � cos 2x near  x � 0.

SOLUTION

The polynomial we want is  P4�x�, the Taylor polynomial for cos 2x at  x � 0.  
Before we go cranking out derivatives though, remember that we can use a known
power series to generate another, as we did in Section 9.1. We know from Exploration 2
that

cos x � 1 � �
x
2!

2

� � �
x
4!

4

� � … � ��1�n �
�2
x

n

2n

�!
� � … .

Therefore,

cos 2x � 1 � �
�2

2
x
!
�2

� � �
�2

4
x
!
�4

� � … � ��1�n �
�
�
2
2
x
n
�
�

2

!

n

� � … .

So,

P4�x� � 1 � �
�2

2
x
!
�2

� � �
�2

4
x
!
�4

�

� 1 � 2x2 � �2�3�x4.

The graph in Figure 9.5 shows how well the polynomial approximates the cosine near
x � 0. Now try Exercise 5.

Who invented Taylor series?

Brook Taylor (1685–1731) did not invent

Taylor series, and Maclaurin series were

not developed by Colin Maclaurin

(1698–1746). James Gregory was al-

ready working with Taylor series when

Taylor was only a few years old, and he

published the Maclaurin series for tan x,
sec x, arctan x, and arcsec x ten years

before Maclaurin was born. Nicolaus Mer-

cator discovered the Maclaurin series for

ln �1 � x� at about the same time.

Taylor was unaware of Gregory’s work

when he published his book Methodus In-

crementorum Directa et Inversa in 1715,

containing what we now call Taylor se-

ries. Maclaurin quoted Taylor’s work in a

calculus book he wrote in 1742. The book

popularized series representations of

functions and although Maclaurin never

claimed to have discovered them, Taylor

series centered at x � 0 became known

as Maclaurin series. History evened

things up in the end. Maclaurin, a brilliant

mathematician, was the original discov-

erer of the rule for solving systems of

equations that we call Cramer’s rule.

[–3, 3] by [–2, 2]

Figure 9.5 The graphs of y � 1 � 2x2 � �2 �3�x4 and y � cos 2x
near x � 0. (Example 3)

These polynomial approximations can be useful in a variety of ways. For one thing, it
is easy to do calculus with polynomials. For another thing, polynomials are built using
only the two basic operations of addition and multiplication, so computers can handle them
easily.

The partial sum 

Pn �x� ��
n

k�0

�
f �k

k

��
!
0�

�xk

is the Taylor polynomial of order n for f at x � 0.
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Section 9.2 Taylor Series 489

Approximating sin 13

How many terms of the series 

�
�

n�0

��1�n�
�2

x
n

2

�

n�

1

1

�!
�

are required to approximate sin 13 accurate to the third decimal place?

1. Find sin 13 on your calculator ( radians, of course).
2. Enter these two multiple-step commands on your home screen. They will give

you the first order and second order Taylor polynomial approximations for sin 13.
Notice that the second order approximation, in particular, is not very good.

3. Continue to hit ENTER. Each time you will add one more term to the Taylor
polynomial approximation. Be patient; things will get worse before they get
better.

4. How many terms are required before the polynomial approximations stabilize
in the thousandths place for  x � 13? 

EXPLORATION 3

0   N: 13   T

N+1   N: T+(–1)^N*1
3^(2N+1)/(2N+1)!
   T

13

–353.1666667

This strategy for approximation would be of limited practical value if we were restricted
to power series at x � 0—but we are not. We can match a power series with f in the same
way at any value x � a, provided we can take the derivatives. In fact, we can get a formula
for doing that by simply “shifting horizontally” the formula we already have. 

DEFINITION Taylor Series Generated by f at x � a

Let f be a function with derivatives of all orders throughout some open interval
containing a. Then the Taylor series generated by f at x � a is

f �a� � f 
�a��x � a� � �
f �

2
�
!
a�
� �x � a�2 � … � �

f �n

n

��
!
a�

� �x � a�n � …

� �
�

k�0

�
f �k

k

��
!
a�

� �x � a�k.

The partial sum 

Pn �x� � �
n

k�0

�
f �k

k

��
!
a�

� �x � a�k

is the Taylor polynomial of order n for f at x � a.
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490 Chapter 9 Infinite Series

EXAMPLE 4 A Taylor Series at x � 2

Find the Taylor series generated by f �x� � ex at  x � 2.

SOLUTION

We first observe that f �2� � f 
�2� � f ��2� � … � f �n��2� � e2. The series,
therefore, is

ex � e2 � e2�x � 2� � �
2
e2

!
� �x � 2�2 � … � �

n
e2

!
� �x � 2�n � …

� �
�

k�0
( �

k
e2

!
� )�x � 2�k.

We illustrate the convergence near x � 2 by sketching the graphs of y � ex and y � P3�x�
in Figure 9.6. Now try Exercise 13.

EXAMPLE 5 A Taylor Polynomial for a Polynomial

Find the third order Taylor polynomial for f �x� � 2x3 � 3x2 � 4x � 5

(a) at  x � 0. (b) at  x � 1.

SOLUTION

(a) This is easy. This polynomial is already written in powers of x and is of degree
three, so it is its own third order (and fourth order, etc.) Taylor polynomial at  x � 0. 

(b) This would also be easy if we could quickly rewrite the formula for f as a polyno-
mial in powers of x � 1, but that would require some messy tinkering. Instead, we
apply the Taylor series formula.

f �1� � 2x3 � 3x2 � 4x � 5|
x�1

� �2

f 
�1� � 6x2 � 6x � 4|
x�1

� 4

f ��1� � 12x � 6|
x�1

� 6

f ��1� � 12

So,

P3�x� � �2 � 4�x � 1� � �
2
6
!
� �x � 1�2 � �

1
3
2
!
� �x � 1�3

� 2�x � 1�3 � 3�x � 1�2 � 4�x � 1� � 2.

This polynomial function agrees with f at every value of x (as you can verify by multi-
plying it out) but it is written in powers of �x � 1� instead of x. Now try Exercise 15.

Combining Taylor Series
On the intersection of their intervals of convergence, Taylor series can be added, sub-
tracted, and multiplied by constants and powers of x, and the results are once again Taylor
series. The Taylor series for f �x� � g�x� is the sum of the Taylor series for f �x� and the

[–1, 4] by [–10, 50]

Figure 9.6 The graphs of y � ex and 
y � P3�x� (the third order Taylor poly-
nomial for ex at x � 2). (Example 4)
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Section 9.2 Taylor Series 491

Taylor series for g�x� because the nth derivative of f � g is f �n� � g�n�, and so on. We can
obtain the Maclaurin series for �1 � cos 2x��2 by substituting 2x in the Maclaurin series
for cos x, adding 1, and dividing the result by 2. The Maclaurin series for sin x � cos x is
the term-by-term sum of the series for sin x and cos x. We obtain the Maclaurin series for
x sin x by multiplying all the terms of the Maclaurin series for sin x by x.

Table of Maclaurin Series
We conclude the section by listing some of the most useful Maclaurin series, all of
which have been derived in one way or another in the first two sections of this chapter.
The exercises will ask you to use these series as basic building blocks for constructing
other series (e.g., tan�1 x2 or 7xe x ). We also list the intervals of convergence, although
rigorous proofs of convergence are deferred until we develop convergence tests in
Sections 9.4 and 9.5. 

Maclaurin Series

�
1 �

1
x

� � 1 � x � x2 � … � xn � … � �
�

n�0

x n ��x � 
 1�

�
1 �

1
x

� � 1 � x � x2 � … � ��x�n � … � �
�

n�0

��1�nx n ��x � 
 1�

ex � 1 � x � �
x
2!

2

� � … � �
x
n

n

!
� � … � �

�

n�0

�
x
n

n

!
� (all real x)

sin x � x � �
x
3!

3

� � �
x
5!

5

� � … � ��1�n �
�2

x
n

2

�

n�1

1�!
� � …

� �
�

n�0

��1�n �
�2

x
n

2

�

n�1

1�!
� (all real x)

cos x � 1 � �
x
2!

2

� � �
x
4!

4

� � … � ��1�n �
�2
x
n

2n

�!
� � …

� �
�

n�0

��1�n �
�2
x
n

2n

�!
� (all real x)

ln �1 � x� � x � �
x
2

2

� � �
x
3

3

� � … � ��1�n�1 �
x
n

n

� � …

� �
�

n�1

��1�n�1 �
x
n

n

� ��1 
 x � 1�

tan�1 x � x � �
x
3

3

� � �
x
5

5

� � … � ��1�n �
2
x
n

2n

�

�1

1
� � …

� �
�

n�0

��1�n �
2
x
n

2n

�

�1

1
� ��x � � 1�
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492 Chapter 9 Infinite Series

In Exercises 1–5, find a formula for the nth derivative of the
function.

1. e2x 2ne2x 2. �
x �

1
1

� (�1)nn!(x � 1)�(n�1)

3. 3x 3x(1n 3)n 4. ln x (�1)n�1(n � 1)!x�n

5. x n n!

In Exercises 6–10, find dy�dx. (Assume that letters other than 
x represent constants.)

6. y � �
x
n!

n

� �
(n

x
�

n�

1

1

)!
� 7. y � �

2n �x
n
�

!
a�n

�

8. y � ��1�n�
�2n

x2

�

n�1

1�!
� 9. y � �

�x
�
�

2n
a
�
�
!

2n

�

10. y � �
�1 �

n!
x�n

�

Quick Review 9.2 (For help, go to Sections 3.3 and 3.6.)

Section 9.2 Exercises

In Exercises 1 and 2, construct the fourth order Taylor polynomial at
x � 0 for the function.

1. f (x) � �1 � x2	 2. f (x) � e2x

In Exercises 3 and 4, construct the fifth order Taylor polynomial and
the Taylor series for the function at x � 0.

3. f (x) � �
x �

1

2
� 4. f (x) � e1�x

In Exercises 5–12, use the table of Maclaurin series on the preceding
page. Construct the first three nonzero terms and the general term of
the Maclaurin series generated by the function and give the interval
of convergence.

5. sin 2x 6. ln �1 � x�
7. tan�1 x2 8. 7x e x

9. cos �x � 2� (Hint: cos �x � 2� � �cos 2��cos x� � �sin 2��sin x��

10. x2 cos x 11. �
1 �

x
x3�

12. e�2x

In Exercises 13 and 14, find the Taylor series generated by the
function at the given point.

13. f (x) � �
x �

1

1
�, x � 2 14. f (x) � ex�2, x � 1

In Exercises 15–17, find the Taylor polynomial of order 3 generated
by f

(a) at  x � 0; (b) at  x � 1.

15. f �x� � x3 � 2x � 4

16. f �x� � 2x3 � x2 � 3x � 8

17. f �x� � x4

In Exercises 18–21, find the Taylor polynomials of orders 0, 1, 2,
and 3 generated by f at  x � a.

18. f �x� � �
1
x

� , a � 2 19. f �x� � sin x, a � p�4

20. f �x� � cos x, a � p�4 21. f �x� � �x	, a � 4

22. Let f be a function that has derivatives of all orders for all 
real numbers. Assume f �0� � 4, f 
�0� � 5, f ��0� � �8,
and f ��0� � 6.

(a) Write the third order Taylor polynomial for f at  x � 0  and
use it to approximate f �0.2�.
(b) Write the second order Taylor polynomial for f 
, the
derivative of f, at x � 0  and use it to approximate f 
�0.2�.

23. Let f be a function that has derivatives of all orders for all real
numbers. Assume f �1� � 4, f 
�1� � �1, f ��1� � 3,
and f ��1� � 2.

(a) Write the third order Taylor polynomial for f at x � 1  and
use it to approximate f �1.2�.
(b) Write the second order Taylor polynomial for f 
, the
derivative of f, at x � 1  and use it to approximate f 
�1.2�.

24. The Maclaurin series for f �x� is

f �x� � 1 � �
2
x
!
� � �

x
3!

2

� � �
x
4!

3

� � … � �
�n �

xn

1�!
� � … .

(a) Find f 
�0� and  f �10��0�.
(b) Let  g�x� � x f �x�.  Write the Maclaurin series for g�x�,
showing the first three nonzero terms and the general term.

(c) Write g�x� in terms of a familiar function without using
series.

25. (a) Write the first three nonzero terms and the general term of
the Taylor series generated by  ex�2 at x � 0.

(b) Write the first three nonzero terms and the general term of 
a power series to represent

g�x� � �
ex �

x
1

� .

(c) For the function g in part (b), find  g
(1)  and use it to show
that

�
�

n�1

�
�n �

n
1�!

� � 1.

26. Let

f �t� � �
1 �

2
t2� and G�x� � �x

0

f �t� dt.

(a) Find the first four terms and the general term for the
Maclaurin series generated by f .

(b) Find the first four nonzero terms and the Maclaurin series 
for G.

�
2n

(
(
n
x �

�

a
1
)
)

n

!

�1

�

�
(�

(2
1
n
)n

)
x
!

2n

� �
(x
(2

�

n �

a)2
1

n

)

�

!

1

�

��
(1
(n

�

�

x)
1

n

)

�

!

1

�
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Section 9.2 Taylor Series 493

27. (a) Find the first four nonzero terms in the Taylor series
generated by f �x� � �1	 �	 x	 at x � 0.

(b) Use the results found in part (a) to find the first four nonzero
terms in the Taylor series for  g�x� � �1	 �	 x	2	 at x � 0.

(c) Find the first four nonzero terms in the Taylor series at x � 0  
for the function h such that  h
�x� � �1	 �	 x	2	 and  h�0� � 5.

28. Consider the power series

�
�

n�0

an x n, where  a0 � 1 and  an � ( �
3
n

� )an�1 for  n � 1.

(This defines the coefficients recursively.)

(a) Find the first four terms and the general term of the series.

(b) What function f is represented by this power series?

(c) Find the exact value of f 
�1�.
29. Use the technique of Exploration 3 to determine the number 

of terms of the Maclaurin series for cos x that are needed to
approximate the value of cos 18 accurate to within 0.001 of 
the true value. 27 terms (or, up to and including the 52nd degree term)

30. Writing to Learn Based on what you know about polynomial
functions, explain why no Taylor polynomial of any order could
actually equal sin x.

31. Writing to Learn Your friend has memorized the Maclaurin
series for both sin x and cos x but is having a hard time remember-
ing which is which. Assuming that your friend knows the trigono-
metric functions well, what are some tips you could give that
would help match sin x and cos x with their correct series?

32. What is the coefficient of x5 in the Maclaurin series generated
by  sin 3x? 81/40

33. What is the coefficient of  �x � 2�3 in the Taylor series
generated by  ln x at  x � 2? 1/24

34. Writing to Learn Review the definition of the linearization of
a differentiable function f at a in Chapter 4. What is the connection
between the linearization of f and Taylor polynomials?

35. Linearizations at Inflection Points

(a) As the figure below suggests, linearizations fit particularly
well at inflection points. As another example, graph Newton’s
serpentine f �x� � 4x��x2 � 1� together with its linearizations
at x � 0  and  x � �3	.

(b) Show that if the graph of a twice-differentiable function f �x�
has an inflection point at  x � a, then the linearization of f at 
x � a is also the second order Taylor polynomial of f at  x � a.
This explains why tangent lines fit so well at inflection points.

The graph of f �x� � cos x and its linearization at  p�2.
(Exercise 35)

�–
2

x

y

0 y � cos x

y � –x ��–
2

36. According to the table of Maclaurin series, the power series 

x � �
x
3

3

� � �
x
5

5

� � … � ��1�n �
2
x
n

2n

�

�1

1
� � …

converges at x � �1. To what number does it converge when
x � 1?  To what number does it converge when  x � �1?

Standardized Test Questions
You should solve the following problems without using 
a graphing calculator.

In Exercises 37 and 38, the Taylor series generated by f (x) at 
x � 0 is

x � �
x

3

3

� � �
x

5

5

� � … � (�1)n �
2

x

n

2n

�

�1

1
� � … .

37. True or False f (0) � 0. Justify your answer.

38. True or False f �(0) � �1�3. Justify your answer.

39. Multiple Choice If f(0) � 0, f 
(0) � 1, f �(0) � 0, and
f �(0) � 2, then which of the following is the third order 
Taylor polynomial generated by f (x) at x � 0? E

(A) 2x3 � x (B) �
1

3
�x3 � �

1

2
�x (C) �

2

3
�x3 � x

(D) 2x3 � x (E) �
1

3
�x3 � x

40. Multiple Choice Which of the following is the coefficient 
of x4 in the Maclaurin series generated by cos (3x)? A

(A) 27�8 (B) 9 (C) 1�24 (D) 0 (E) �27�8

In Exercises 41 and 42, let f (x) � sin x.

41. Multiple Choice Which of the following is the fourth order
Taylor polynomial generated by f (x) at x � p�2? C

(A) (x � p�2) � �
(x �

2

p

!

�2)2

� � �
(x �

4

p

!

�2)4

�

(B) 1 � �
(x �

2

p

!

�2)2

� � �
(x �

4

p

!

�2)4

�

(C) 1 � �
(x �

2

p

!

�2)2

� � �
(x �

4

p

!

�2)4

�

(D) 1 � (x � p�2)2 � (x � p�2)4

(E) 1 � (x � p�2)2 � (x � p�2)4

42. Multiple Choice Which of the following is the Taylor series
generated by f (x) at x � p�2? A

(A) �
�

n�0 

(�1)n�
(x �

(2

p

n)

�

!

2)2n

�

(B) �
�

n�0 

(�1)n�
(x �

(

p

2n

�2

)!

)2n�1

�

(C) �
�

n�0 

�
(x �

(2

p

n)

�

!

2)2n

�

(D) �
�

n�0 

(�1)n(x � p�2)2n

(E) �
�

n�0 

(x � p�2)2n

When x � 1: ��4 When x � �1: ���4

True. The constant term is f(0).

38. False. It is �2 because the coefficient of x3 is �
f �

3

(
!
0)
�.
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494 Chapter 9 Infinite Series

Explorations
43. (a) Using the table of Maclaurin series, find a power series 

to represent f �x� � �sin x��x.

(b) The power series you found in part (a) is not quite a
Maclaurin series for f, because f is technically not eligible 
to have a Maclaurin series. Why not?

(c) If we redefine f as follows, then the power series in part (a)
will be a Maclaurin series for f. What is the value of k?

�
sin

x
x

� , x 	 0,
f �x� � {

k, x � 0

44. Group Activity Find a function f whose Maclaurin 
series is

1x1 � 2x2 � 3x3 � … � nx n � … .

Extending the Ideas
45. The Binomial Series Let f �x� � �1 � x�m for some nonzero

constant m.

(a) Show that  f ��x� � m�m � 1��m � 2��1 � x�m�3.

(b) Extend the result of part (a) to show that

f �k��0� � m�m � 1��m � 2� … �m � k � 1�.

(c) Find the coefficient of x k in the Maclaurin series generated
by f.

(d) We define the symbol (m
k ) as follows:

(m
k ) � ,

with the understanding that

(m
0 ) � 1 and (m

1 ) � m.

With this notation, show that the Maclaurin series 
generated by f �x� � �1 � x�m is

�
�

k�0
(m

k ) x k.

This is called the binomial series.

46. (Continuation of Exercise 45) If m is a positive integer,
explain why the Maclaurin series generated by f is a polynomial
of degree m. (This means that 

�1 � x�m � �
m

k�0
(m

k ) x k.

You may recognize this result as the Binomial Theorem from
algebra.)

m�m � 1��m � 2� … �m � k � 1�
����

k!

43. (a) 1 � �
3
x2

!
� � �

5
x4

!
� � … � �

(
(
�

2n
1
�

)n

1
x
)

2

!

n
� � …

(b) Because f is undefined at x � 0.
(c) k � 1

45. (a) Differentiate 3 times.
(b) Differentiate k times and let x � 0.

(c) 

(d) f(0) � 1, f
(0) � m, and we’re done by part (c).

m(m�1)(m�2) … (m�k�1)
���

k!

�
(x �

x
1)2�

Because f(x) � (1 � x)m is
a polynomial of degree m.
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Taylor’s Theorem

Taylor Polynomials
While there is a certain unspoiled beauty in the exactness of a convergent Taylor series, it is
the inexact Taylor polynomials that essentially do all the work. It is satisfying to know, for
example, that sin x can be found exactly by summing an infinite Taylor series, but if we want
to use that information to find sin 3, we will have to evaluate Taylor polynomials until we
arrive at an approximation with which we are satisfied. Even a computer must deal with finite
sums. 

EXAMPLE 1 Approximating a Function to Specifications

Find a Taylor polynomial that will serve as an adequate substitute for sin x on the interval
��p, p
.

SOLUTION

You do not have to be a professional mathematician to appreciate the imprecision of
this problem as written. We are simply unable to proceed until someone decides what
an “adequate” substitute is! We will revisit this issue shortly, but for now let us accept
the following clarification of “adequate.”

By “adequate,” we mean that the polynomial should differ from sin x by less than
0.0001 anywhere on the interval. 

Now we have a clear mission: Choose Pn�x� so that �Pn�x� � sin x � 
 0.0001 for every x
in the interval ��p, p
. How do we do this?

Recall the nine graphs of the partial sums of the Maclaurin series for sin x in Section
9.2. They show that the approximations get worse as x moves away from 0, suggesting
that if we can make �Pn �p� � sin p�
 0.0001, then Pn will be adequate throughout
the interval. Since  sin p � 0, this means that we need to make �Pn �p��
 0.0001. 

We evaluate the partial sums at x � p, adding a term at a time, eventually arriving at
the following:

As graphical support that the polynomial  P13�x�  is adequate throughout the interval,
we graph the absolute error of the approximation, namely �P13�x� � sin x �, in the
window  ��p, p
 by  ��0.00004, 0.00004
 (Figure 9.7). Now try Exercise 11.

In practical terms, then, we would like to be able to use Taylor polynomials to approxi-
mate functions over the intervals of convergence of the Taylor series, and we would like to
keep the error of the approximation within specified bounds. Since the error results from
truncating the series down to a polynomial (that is, cutting it off after some number of terms),
we call it the truncation error.

π–π3/3!+π^5/5!–π
^7/7!+π^9/9!–π^1
1/11!+π^13/13!

2.114256749E –5

9.3

What you’ll learn about

• Taylor Polynomials

• The Remainder

• Remainder Estimation Theorem

• Euler’s Formula

. . . and why 

If we approximate a function rep-
resented by a power series by its
Taylor polynomials, it is important
to know how to determine the
error in the approximation.

[–�, �] by [–0.00004, 0.00004]

Figure 9.7 The graph shows that
�P13�x� � sin x � 
 0.00010 throughout 
the interval ��p, p
. (Example 1)
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496 Chapter 9 Infinite Series

EXAMPLE 2 Truncation Error for a Geometric Series

Find a formula for the truncation error if we use  1 � x2 � x4 � x6 to approximate
1��1 � x2� over the interval ��1, 1�.

SOLUTION

We recognize this polynomial as the fourth partial sum of the geometric series for
1��1 � x2�.  Since this series converges to  1��1 � x2� on ��1, 1�, the truncation 
error is the absolute value of the part that we threw away, namely

�x8 � x10 � … � x2n � … �.

This is the absolute value of a geometric series with first term x8 and r � x2. Therefore,

�x8 � x10 � … � x2n � … � � ��1 �

x8

x2� � � �
1 �

x8

x2� .

Figure 9.8 shows that the error is small near 0, but increases as x gets closer to 1 or �1.
Now try Exercise 13.

You can probably infer from our solution in Example 2 that the truncation error after 5
terms would be x10��1 � x2�, and after n terms would be x2n��1 � x2�. Figure 9.9 shows
how these errors get closer to 0 on the interval ��1, 1� as n gets larger, and that they still
get worse as we approach �1 and 1.

It was fortunate for our error analysis that this series was geometric, since the error 
was consequently a geometric series itself. This enabled us to write it as a (non-series)
function and study it exactly. But how could we handle the error if we were to truncate a
nongeometric series? That practical question sets the stage for Taylor’s Theorem.

The Remainder
Every truncation splits a Taylor series into two equally significant pieces: the Taylor poly-
nomial Pn�x� that gives us the approximation, and the remainder Rn�x� that tells us whether
the approximation is any good. Taylor’s Theorem is about both pieces.

Figure 9.8 A graph of the truncation
error on ��1, 1� if P6 �x� is used to 
approximate 1��1 � x2�. (Example 2)

Figure 9.9 The truncation errors for 
n � 2, 4, 6, 8, 10, when we approximate 
1��1 � x2� by its Taylor polynomials of
higher and higher order. (The errors for 
the higher order polynomials are on the
bottom.)

THEOREM 3 Taylor’s Theorem with Remainder

If f has derivatives of all orders in an open interval I containing a, then for each
positive integer n and for each x in I,

f �x� � f �a� � f 
�a��x � a� � �
f �

2
�
!
a�
� �x � a�2 � … � �

f �n

n

��
!
a�

� �x � a�n � Rn �x�,

where

Rn �x� � �
�
f
n

�n�

�

1��
1
c
�
�
!

� �x � a�n�1

for some c between a and x.

Pause for a moment to consider how remarkable this theorem is. If we wish to approxi-
mate f by a polynomial of degree n over an interval I, the theorem gives us both a formula
for the polynomial and a formula for the error involved in using that approximation over the
interval I.

The first equation in Taylor’s Theorem is Taylor’s formula. The function Rn �x� is the
remainder of order n or the error term for the approximation of f by Pn �x� over I. It is
also called the Lagrange form of the remainder, and bounds on Rn �x� found using this
form are Lagrange error bounds.

[–1, 1] by [–5, 5]

y = x8/(1 – x2)

[–1, 1] by [–2, 2]
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The introduction of Rn �x� finally gives us a mathematically precise way to define what
we mean when we say that a Taylor series converges to a function on an interval. 
If Rn �x�→0 as n→� for all x in I, we say that the Taylor series generated by f at x � a
converges to f on I, and we write

f �x� � �
�

k�0

�
f �k

k

�

!
�a�
� �x � a�k.

EXAMPLE 3 Proving Convergence of a Maclaurin Series

Prove that the series 

�
�

k�0

��1�k�
�2

x
k

2

�

k�1

1�!
�

converges to  sin x for all real x.

SOLUTION

We need to consider what happens to  Rn �x� as  n→�.

By Taylor’s Theorem,

Rn �x) � �
�
f
n

�n�

�

1��
1
c
�
�
!

� �x � 0�n�1,

where  f �n�1��c� is the �n � 1�st derivative of  sin x evaluated at some c between x and
0. This does not seem at first glance to give us much information, but for this particu-
lar function we can say something very significant about f �n�1��c�: it lies between �1
and 1 inclusive. Therefore, no matter what x is, we have

�Rn �x�� � ���
f
n

�n�

�

1��
1
c
�
�
!

� �x � 0�n�1 �

� �
�

�
f
n

�n

�

�1�

1
�
�
c
!
� �

� �x n�1 �

� �
�n �

1
1�!

� �x n�1 � � �
�n
�x

�

�n�

1

1

�!
� .

What happens to  �x �n�1��n � 1�!  as  n→�?  The numerator is a product of  n � 1
factors, all of them �x �. The denominator is a product of  n � 1  factors, the largest of
which eventually exceed �x � and keep on growing as  n→�.  The factorial growth in
the denominator, therefore, eventually outstrips the power growth in the numerator, and
we have  �x �n�1��n � 1�!→0 for all x. This means that  Rn �x�→0  for all x, which
completes the proof. Now try Exercise 15.

Your Turn

Modify the steps of the proof in Example 3 to prove that 

�
�

k�0

��1�k �
�2
x
k

2k

�!
�

converges to  cos x for all real x.

EXPLORATION 1

Remainder Estimation Theorem
Notice that we were able to use the remainder formula in Taylor’s Theorem to verify the
convergence of two Taylor series to their generating functions (sin x and cos x), and yet in
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498 Chapter 9 Infinite Series

neither case did we have to find an actual value for f �n�1��c�. Instead, we were able to put an
upper bound on � f �n�1��c��, which was enough to ensure that Rn�x�→0 for all x. This strat-
egy is so convenient that we state it as a theorem for future reference.

THEOREM 4 Remainder Estimation Theorem

If there are positive constants M and r such that � f �n�1��t�� � Mr n�1 for all t
between a and x, then the remainder  Rn �x� in Taylor’s Theorem satisfies the
inequality

�Rn �x�� � M�
r n�

�

1

n
�x

�

�

1
a
�!
�n�1

� .

If these conditions hold for every n and all the other conditions of Taylor’s
Theorem are satisfied by f, then the series converges to f �x�.

It does not matter if M and r are huge; the important thing is that they do not get any
more huge as n→�. This allows the factorial growth to outstrip the power growth and
thereby sweep Rn �x� to zero. 

EXAMPLE 4 Proving Convergence

Use the Remainder Estimation Theorem to prove that 

ex � �
�

k�0

�
x
k!

k

�

for all real x.

SOLUTION

We have already seen that this is the Taylor series generated by ex at  x � 0, so all that
remains is to verify that  Rn �x�→0  for all x. By the Remainder Estimation Theorem, it
suffices to find M and r such that � f �n�1��t�� � et is bounded by  Mr n�1 for t between
0 and an arbitrary x.

We know that et is an increasing function on any interval, so it reaches its maximum
value at the right-hand endpoint. We can pick M to be that maximum value and simply
let  r � 1.  If the interval is �0, x
, we let  M � ex;  if the interval is �x, 0
, we let
M � e0 � 1.  In either case, we have  et � M throughout the interval, and the
Remainder Estimation Theorem guarantees convergence. Now try Exercise 17.

EXAMPLE 5 Estimating a Remainder

The approximation  ln �1 � x� � x � �x2�2� is used when x is small. Use the Remainder
Estimation Theorem to get a bound for the maximum error when  �x � � 0.1.  Support the
answer graphically.

SOLUTION

In the notation of the Remainder Estimation Theorem, f �x� � ln �1 � x�, the poly-
nomial is  P2�x�, and we need a bound for �R2�x��.  On the interval ��0.1, 0.1
, the 

function  � f �3��t�� � 2��1 � t�3 is strictly decreasing, achieving its maximum value at
the left-hand endpoint, �0.1. We can therefore bound � f �3��t�� by 

M � ���1 � ��
2

0.1��3� � � �
2
7
0
2
0
9
0

� .

We can let  r � 1.
continued
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By the Remainder Estimation Theorem, we may conclude that

�R2�x�� � �
2
7
0
2
0
9
0

� • �
�

3
x
!
�3
� � �

2
7
0
2
0
9
0

� • �
��

3
0
!
.1�3
� 
 4.6 � 10�4.

Since  R2�x� � ln �1 � x� � �x � x2�2�, it is an easy matter to produce a graph to
observe the behavior of the error on the interval ��0.1, 0.1
 (Figure 9.10).

The graph almost appears to have odd-function symmetry, but evaluation shows that
R2��0.1� � �3.605 � 10�4 and  R2�0.1� � 3.102 � 10�4.  The maximum absolute
error on the interval is 3.605 � 10�4, which is indeed less than the bound, 4.6 � 10�4.

Now try Exercise 23.

Euler’s Formula
We have seen that sin x, cos x, and ex equal their respective Maclaurin series for all real
numbers x. It can also be shown that this is true for all complex numbers, although we
would need to extend our concept of limit to know what convergence would mean in that
context. Accept for the moment that we can substitute complex numbers into these power
series, and let us see where that might lead. 

We mentioned at the beginning of the chapter that Leonhard Euler had derived some
powerful results using infinite series. One of the most impressive was the surprisingly sim-
ple relationship he discovered that connects the exponential function ex to the trigonomet-
ric functions sin x and cos x. You do not need a deep understanding of complex numbers to

understand what Euler did, but you do need to recall the powers of i � ��	1	.

i1 � i

i2 � �1

i3 � �i

i 4 � 1

i5 � i

i6 � �1

i7 � �i

i 8 � 1

etc.

Now try this exploration!

Rounded up,
to be safe

Euler’s Formula

Assume that ex, cos x, and sin x equal their Maclaurin series (as in the table in
Section 9.2) for complex numbers as well as for real numbers.

1. Find the Maclaurin series for  eix.

2. Use the result of part 1 and the Maclaurin series for cos x and sin x to prove
that  eix � cos x � i sin x. This equation is known as Euler’s formula.

3. Use Euler’s formula to prove that  eip � 1 � 0.  This beautiful equation, which
brings together the five most celebrated numbers in mathematics in such a stun-
ningly unexpected way, is also widely known as Euler’s formula. (There are still
others. The prolific Euler had more than his share.)

EXPLORATION 2

Figure 9.10 The graph of the error term
R2�x� in Example 5. Maximum error for 
�x � � 0.1 occurs at the left-hand endpoint 
of the interval.

[–0.12, 0.12] by [–0.0005, 0.0005]

y = ln (1 + x) – (x – x2/2)

Srinivasa Ramanujan
(1887–1920)

Ramanujan, from

southern India,

wrote with

amazing origi-

nality and depth

on a wide range

of topics in

mathematics, including infinite series,

prime and composite numbers, integers

as the sum of squares, function theory,

and combinatorics. His theorems have

influenced medical research and statisti-

cal mechanics. One of his identities has

been used by computer programmers to

calculate the decimal expansion of pi to

millions of digits. There are still areas of

his work that have not been explored.

Ramanujan was largely self taught and,

although he worked with the British

mathematician G. H. Hardy of

Cambridge, he never graduated from

college because he neglected his other

studies for mathematics.
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500 Chapter 9 Infinite Series

In Exercises 1–5, find the smallest number M that bounds � f � from
above on the interval I (that is, find the smallest M such that  � f �x�� � M
for all x in I ).

1. f �x� � 2 cos �3x�, I � ��2p, 2p
 2

2. f �x� � x2 � 3, I � �1, 2
 7

3. f �x� � 2x, I � ��3, 0
 1

4. f �x� � �
x2 �

x
1

� , I � ��2, 2
 1/2

5.
2 � x2, x � 1,

f �x� � {2x � 1, x � 1,
I � ��3, 3
 7

In Exercises 6–10, tell whether the function has derivatives of all
orders at the given value of a.

6. �
x �

x
1

� , a � 0 Yes

7. �x2 � 4 �, a � 2 No

8. sin x � cos x, a � p Yes

9. e�x, a � 0 Yes

10. x3�2, a � 0 No

Quick Review 9.3 (For help, go to Sections 3.3 and 3.6.)

Section 9.3 Exercises

In Exercises 1–5, find the Taylor polynomial of order four for 
the function at x � 0, and use it to approximate the value of the
function at x � 0.2. 

1. e�2x 2. cos �px�2�

3. 5 sin ��x� 4. ln �1 � x2�

5. �1 � x��2

In Exercises 6–10, find the Maclaurin series for the function.

6. sin x � x � �
3
x
!

3

� 7. xex

8. cos2 x (� �
1 � c

2
os 2x
�) 9. sin2 x

10. �
1 �

x2

2x
� x2 � 2x3 � 4x4 � … � 2nxn�2 � …

11. Use graphs to find a Taylor polynomial Pn(x) for ln (1 � x) so
that �Pn(x) � ln (1 � x)� 
 0.001 for every x in [�0.5, 0.5].

12. Use graphs to find a Taylor polynomial Pn(x) for cos x so that
�Pn(x) � cos x� 
 0.001 for every x in [�p, p]. P12(x)

13. Find a formula for the truncation error if we use P6(x) to 

approximate �
1 �

1

2x
� on (�1�2, 1�2). �

1
(2

�

�x�
2
)7

x
�

14. Find a formula for the truncation error if we use P9(x) to 

approximate �
1 �

1

x
� on (�1, 1). �

1
x
�

10

x
�

In Exercises 15–18, use the Remainder Estimation Theorem to prove
that the Maclaurin series converges to the generating function from
the given exercise.

15. Exercise 7 16. Exercise 6

17. Exercise 9 18. Exercise 8

19. For approximately what values of x can you replace  sin x by
x � �x3�6� with an error magnitude no greater than 5 � 10�4?
Give reasons for your answer.

20. If cos x is replaced by  1 � �x2�2� and  �x � 
 0.5, what estimate
can be made of the error? Does  1 � �x2�2� tend to be too large
or too small? Support your answer graphically.

21. How close is the approximation  sin x � x when �x � 
 10�3? For
which of these values of x is  x 
 sin x?  Support your answer
graphically.

22. The approximation  �1	 �	 x	 � 1 � �x�2� is used when x is
small. Estimate the maximum error when  �x � 
 0.01.

23. The approximation  ex � 1 � x � �x2�2� is used when x is
small. Use the Remainder Estimation Theorem to estimate the
error when  �x � 
 0.1. �Error� 
 1.842 � 10�4

24. Hyperbolic sine and cosine The hyperbolic sine and hyper-
bolic cosine functions, denoted sinh and cosh respectively, are
defined as

sinh x � �
ex �

2
e�x

� and cosh x � �
ex �

2
e�x

� .

(Appendix A6 gives more information about hyperbolic
functions.)

Find the Maclaurin series generated by  sinh x and  cosh x.

25. (Continuation of Exercise 24) Use the Remainder
Estimation Theorem to prove that  cosh x equals its Maclaurin
series for all real numbers x.

26. Writing to Learn Review the statement of the Mean Value
Theorem (Section 4.2) and explain its relationship to Taylor’s
Theorem.

Quadratic Approximations Just as we call the Taylor poly-
nomial of order 1 generated by f at x � a the linearization of
f at a, we call the Taylor polynomial of order 2 generated by f
at x � a the quadratic approximation of f at a.

x2 � �
x
2

4
�; f (0.2) � 0.0392

1 � 2x � 3x2 � 4x3 � 5x4; f(0.2) � 1.56

3. �5x � �
5
6

�x3; f (0.2) � �0.99331. 1 � 2x � 2x2 � �
4
3

�x3 � �
2
3

�x4; f(0.2) � 0.6704 2. 1 � �
�

8

2
�x2 � �

3
�

8

4

4
�x4; f(0.2) � 0.9511

P7(x)

�1.27 � 10�5

19. Using the theorem, �0.56 
 x 
 0.56 Graphically, �0.57 
 x 
 0.57 20. �Error� 
 0.0026 (approximately) 1 � �
x
2

2
� is too small.

21. �Error� 
 1.67 � 10�10 x 
 sin x for negative values of x.
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In Exercises 27–31, find (a) the linearization and (b) the quadratic
approximation of f at  x � 0.  Then (c) graph the function and its
linear and quadratic approximations together around  x � 0  and
comment on how the graphs are related.

27. f �x� � ln �cos x�
28. f �x� � esin x

29. f �x� � 1��1	 �	 x	2	
30. f �x� � sec x

31. f �x� � tan x

32. Use the Taylor polynomial of order 2 to find the quadratic
approximation of f �x� � �1 � x�k at  x � 0  (k a constant). 
If  k � 3, for approximately what values of x in the interval 
�0, 1
 will the magnitude of the error in the quadratic
approximation be less than 1�100?

33. A Cubic Approximation of ex The approximation

ex � 1 � x � �
x
2

2

� � �
x
6

3

�

is used on small intervals about the origin. Estimate the
magnitude of the approximation error for  �x � � 0.1.

34. A Cubic Approximation Use the Taylor polynomial of order 3
to find the cubic approximation of  f �x� � 1��1 � x� at x � 0.
Give an upper bound for the magnitude of the approximation 
error for  �x � � 0.1.

35. Consider the initial value problem,

�
d
d

x
y
� � e�x2 and y � 2 when  x � 0.

(a) Can you find a formula for the function y that does not
involve any integrals?

(b) Can you represent y by a power series?

(c) For what values of x does this power series actually equal the
function y? Give a reason for your answer.

36. (a) Construct the Maclaurin series for  ln �1 � x�.
(b) Use this series and the series for  ln �1 � x� to construct a
Maclaurin series for

ln �
1
1

�

�

x
x

� .

37. Identifying Graphs Which well-known functions are
approximated on the interval ��p�2, p�2� by the following
Taylor polynomials?

(a) x � �
x
3

3

� � �
2
1
x
5

5

� � �
1
3
7
1
x
5

7

� � �
2
6
8
2
3
x
5

9

� tan x

(b) 1 � �
x
2

2

� � �
5
2
x
4

4

� � �
6
7
1
2
x
0

6

� � �
2
8
7
0
7
6
x
4

8

� sec x

Standardized Test Questions
You may use a graphing calculator to solve the following
problems.

38. True or False The degree of the linearization of a function f
at x = a must be 1. Justify your answer. False. If f 
(a) happens to
be 0, then the linearization is a constant function.

39. True or False If �
�

n�0

�
xn

n

�

!

1

� � x � x2 � �
2

x3

!
� � … is the

Maclaurin series for the function f (x), then f
(0) � 1. Justify
your answer. True. The coefficient of x is f
(0).

40. Multiple Choice Which of the following gives the Taylor
polynomial of order 5 approximation to sin (1.5)? D

(A) 0.965 (B)  0.985 (C) 0.997 (D) 1.001 (E)  1.005

41. Multiple Choice Let �
�

n�0

�
x
n

n�

!

1

� � x � x2 � �
2

x3

!
� � … be the

Maclaurin series for f (x). Which of the following is f (12)(0), the
12th derivative of f at x � 0? E

(A) 1�11! (B) 1�12! (C) 0 (D) 1 (E) 12

42. Multiple Choice Let �
�

n�0

(�1)n �
(2

x

n

2n

)!
� � 1 � �

2

x2

!
� � �

4

x4

!
� � …

be the Maclaurin series for cos x. Which of the following gives
the smallest value of n for which �Pn(x) � cos x � 
 0.01 for all x
in the interval [�p, p]? B

(A) 12 (B) 10 (C) 8 (D) 6 (E)  4

43. Multiple Choice Which of the following is the quadratic
approximation for f (x) � e�x at x � 0? A

(A) 1 � x � �
1

2
�x2 (B) 1 � x � �

1

2
�x2

(C) 1 � x � �
1

2
�x2 (D) 1 � x (E) 1 � x

Explorations
44. Group Activity Try to reinforce each other’s ideas and verify

your computations at each step. 

(a) Use the identity 

sin2 x � �
1
2

� �1 � cos 2x�

to obtain the Maclaurin series for  sin2 x.

(b) Differentiate this series to obtain the Maclaurin series 
for  2 sin x cos x.

(c) Verify that this is the series for  sin 2x.

45. Improving Approximations to �

(a) Let P be an approximation of p accurate to n decimal places.
Check with a calculator to see that  P � sin P gives an approx-
imation correct to 3n decimal places!

(b) Use the Remainder Estimation Theorem and the Maclaurin
series for sin x to explain what is happening in part (a). (Hint:
Let  P � p � x, where x is the error of the estimate. Why
should  �P � sin P� � p be less than x3?)

46. Euler’s Identities Use Euler’s formula to show that

(a) cos u � �
eiu �

2
e�iu

� , and

(b) sin u � �
eiu �

2i
e�iu

� .

32. P2(x) � 1 � kx � �
k(k �

2
1)x2
�.

33. ⏐Error⏐ 
 4.61 � 10�6, by Remainder Estimation
Theorem (actual maximum error is � 4.251 � 10�6)

34. P3(x) � 1 � x � x2 � x3.
⏐Error⏐ 
 1.70 � 10�4, by Remainder Estimation
Theorem (actual maximum error is � 1.11 � 10�4)
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Extending the Ideas
47. When a and b are real numbers, we define  e�a�ib� x with the

equation

e�a�ib� x � eax • eibx � eax �cos bx � i sin bx�.
Differentiate the right-hand side of this equation to show that 

�
d
d
x
� e�a�ib� x � �a � ib� e�a�ib� x.

Thus, the familiar rule 

�
d
d
x
� ekx � kekx

holds for complex values of k as well as for real values. 

48. (Continuation of Exercise 47)

(a) Confirm the antiderivative formula

�e�a�ib� x dx � �
a
a
2
�

�

i
b
b

2� e�a�ib� x � C

by differentiating both sides. ( In this case, C � C1 � iC2
is a complex constant of integration.)

(b) Two complex numbers  a � ib and  c � id are equal if and
only if a � c and  b � d. Use this fact and the formula in part (a)
to evaluate  �eax cos bx dx and  �eax sin bx dx.

You should solve the following problems without using 
a graphing calculator.

1. Multiple Choice Which of the following is the sum of the

series �
�

n�0

�
e
p

2

n

n
�?   D

(A) �
e �

e

p
� (B) �

p

p

� e
� (C) �

p �

p

e2
�

(D) �
e2

e

�

2

p
� (E) The series diverges.

2. Multiple Choice Assume that f has derivatives of all orders
for all real numbers x, f (0) � 2, f
(0) � �1, f �(0) � 6, and 
f �(0) � 12. Which of the following is the third order Taylor
polynomial for f at x � 0? A

(A) 2 � x � 3x2 � 2x3 (B) 2 � x � 6x2 � 12x3

(C) 2 � �
1

2
�x � 3x2 � 2x3 (D) �2 � x � 3x2 � 2x3

(E) 2 � x � 6x2

3. Multiple Choice Which of the following is the Taylor series
generated by f (x) � 1/x at x � 1? E

(A) �
�

n�0 

(x � 1)n (B) �
�

n�0 

(�1)n xn

(C) �
�

n�0 

(�1)n(x � 1)n (D) �
�

n�0 

(�1)n �
(x �

n!

1)n

�

(E) �
�

n�0 

(�1)n(x � 1)n

4. Free Response Let f be the function defined by 

f (x) � �
�

n�0 

2��x �

3

2
��

n

for all values of x for which the series converges.

(a) Find the interval of convergence for the series.

(b) Find the function that the series represents.

Quick Quiz for AP* Preparation: Sections 9.1–9.3

(a) Since the series is geometric, it converges if and only if �r � 
 1, 

where r � �
x �

3
2

�. So, ��x �

3
2

��
 1 ⇒ �x � 2� 
 3 ⇒ �5 
 x 
 1.

The interval of convergence is (�5, 1).
(b) The series is geometric with first term 2 and common ratio r � �

x �

3
2

�.
It therefore converges to

� �
1 �

6
x

�.
2

��
1 � �

x �
3

2
�
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Radius of Convergence

Convergence
Throughout our explorations of infinite series we stressed the importance of convergence.
In terms of numbers, the difference between a convergent series and a divergent series
could hardly be more stark: a convergent series is a number and may be treated as such; a
divergent series is not a number and must not be treated as one.

Recall that the symbol “�” means many different things in mathematics.

1. 1 � 1 � 2  signifies equality of real numbers. It is a true sentence.

2. 2�x � 3� � 2x � 6 signifies equivalent expressions. It is a true sentence. 

3. x2 � 3 � 7 is an equation. It is an open sentence, because it can be true or false,
depending on whether x is a solution to the equation. 

4. �x2 � 1���x � 1� � x � 1 is an identity. It is a true sentence (very much like the
equation in (2)), but with the important qualification that x must be in the domain of
both expressions. If either side of the equality is undefined, the sentence is meaning-
less. Substituting �1 into both sides of the equation in (3) gives a sentence that is
mathematically false �i.e., 4 � 7�; substituting �1 into both sides of this identity
gives a sentence that is meaningless.

EXAMPLE 1 The Importance of Convergence

Consider the sentence 

�
1 �

1
x2� � 1 � x2 � x4 � x6 � … � ��1�nx2n � … .

For what values of x is this an identity?

SOLUTION

The function on the left has domain all real numbers. The function on the right can be
viewed as a limit of Taylor polynomials. Each Taylor polynomial has domain all real
numbers, but the polynomial values converge only when �x � 
 1, so the series has the
domain ��1, 1�. If we graph the Taylor polynomials (Figure 9.11), we can see the 
dramatic convergence to 1��1 � x2� over the interval ��1, 1�. The divergence is just 
as dramatic for �x � � 1.

For values of x outside the interval, the statement in this example is meaningless. The
Taylor series on the right diverges so it is not a number. The sentence is an identity for x
in ��1, 1�. Now try Exercise 1.

9.4

What you’ll learn about

• Convergence

• nth-Term Test

• Comparing Nonnegative Series

• Ratio Test

• Endpoint Convergence

. . . and why 

It is important to develop a 
strategy for finding the interval 
of convergence of a power series
and to obtain some tests that 
can be used to determine 
convergence of a series.

[–2, 2] by [–1, 2]

(a)

y = 1
1 + x2

[–2, 2] by [–1, 2]

(b)

Partial Sums

Figure 9.11 (a) The graph of y �
1��1 � x2� and (b) the graphs of the Taylor
polynomials P2�x�, P4�x�, P6�x�, P8�x�, and
P10�x�. The approximations become better
and better, but only over the interval of
convergence ��1, 1�. (Example 1)
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504 Chapter 9 Infinite Series

As convincing as these graphs are, they do not prove convergence or divergence as
n→�. The series in Example 1 happens to be geometric, so we do have an analytic proof
that it converges for �x � 
 1 and diverges for �x � � 1, but for nongeometric series we do
not have such undeniable assurance about convergence (yet). 

In this section we develop a strategy for finding the interval of convergence of an arbi-
trary power series and backing it up with proof. We begin by noting that any power series
of the form ��

n�0 cn�x � a�n always converges at x � a, thus assuring us of at least one
coordinate on the real number line where the series must converge. We have encountered
power series that converge for all real numbers (the Maclaurin series for sin x, cos x, and
ex), and we have encountered power series like the series in Example 1 that converge only
on a finite interval centered at a. A useful fact about power series is that those are the only
possibilities, as the following theorem attests. 

THEOREM 5 The Convergence Theorem for Power Series

There are three possibilities for ��
n�0 cn�x � a�n with respect to convergence:

1. There is a positive number R such that the series diverges for �x � a � � R but
converges for �x � a � 
 R. The series may or may not converge at either of the
endpoints x � a � R and x � a � R.

2. The series converges for every x �R � ��.

3. The series converges at  x � a and diverges elsewhere �R � 0�.

The number R is the radius of convergence, and the set of all values of x for which the
series converges is the interval of convergence. The radius of convergence completely de-
termines the interval of convergence if R is either zero or infinite. For 0 
 R 
 �, how-
ever, there remains the question of what happens at the endpoints of the interval. The table
of Maclaurin series at the end of Section 9.2 includes intervals of convergence that are
open, half-open, and closed.

We will learn how to find the radius of convergence first, and then we will settle the
endpoint question in Section 9.5.

nth-Term Test
The most obvious requirement for convergence of a series is that the nth term must go to
zero as n→�. If the partial sums are approaching a limit S, then they also must be getting
close to one another, so that for a convergent series �an ,

lim
n→�

an � lim
n→�

�Sn � Sn�1� � S � S � 0.

This gives a handy test for divergence:

THEOREM 6 The nth-Term Test for Divergence

��
n�1 an diverges if limn→� an fails to exist or is different from zero.

Seki Kowa (1642—1708)

Child prodigy, brilliant

mathematician, and in-

spirational teacher,

Seki Kowa was born

into a samurai warrior

family in Fujioka,

Kozuke, Japan, and

adopted by the family

of an accountant. Among his contribu-

tions were an improved method of solv-

ing higher-degree equations, the use of

determinants in solving simultaneous

equations, and a form of calculus known

in Japan as yenri. It is difficult to know

the full extent of his work because the

samurai code demanded great modesty.

Seki Kowa is credited with awakening in

Japan a scientific spirit that continues

to this day.
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Comparing Nonnegative Series
An effective way to show that a series � an of nonnegative numbers converges is to com-
pare it term by term with a known convergent series � cn.

THEOREM 7 The Direct Comparison Test

Let � an be a series with no negative terms.

(a) � an converges if there is a convergent series � cn with an � cn for all n � N, for
some integer N.

(b) � an diverges if there is a divergent series � dn of nonnegative terms with
an � dn for all n � N, for some integer N.

If we can show that � an , an � 0 is eventually dominated by a convergent series, that
will establish the convergence of � an. If we can show that � an eventually dominates a 
divergent series of nonnegative terms, that will establish the divergence of � an.

We leave the proof to Exercises 61 and 62. 

EXAMPLE 2 Proving Convergence by Comparison

Prove that �
�

n�0

�
�
x
n!

2

�

n

2� converges for all real x.

SOLUTION

Let x be any real number. The series

�
�

n�0

�
�
x
n!

2

�

n

2�

has no negative terms. 

For any n, we have 

�
�
x
n!

2

�

n

2� � �
x
n

2

!

n

� � �
�x

n

2

!
�n

� .

We recognize

�
�

n�0

�
�x

n

2

!
�n

�

as the Taylor series for ex 2, which we know converges to ex 2 for all real numbers. Since
the ex 2 series dominates

�
�

n�0

�
�
x
n!

2

�

n

2�

term by term, the latter series must also converge for all real numbers by the Direct
Comparison Test. Now try Exercise 3.

For the Direct Comparison Test to apply, the terms of the unknown series must be non-
negative. The fact that � an is dominated by a convergent positive series means nothing if 
� an diverges to ��. You might think that the requirement of nonnegativity would limit the
usefulness of the Direct Comparison Test, but in practice this does not turn out to be the case.
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506 Chapter 9 Infinite Series

Proof For each n,

��an � � an � �an�, so 0 � an � �an � � 2 �an�.

If � �an� converges, then � 2�an� converges, and by the Direct Comparison Test, the nonneg-
ative series � �an � �an�� converges. The equality an � �an � �an�� � �an� now allows us to
express � an as the difference of two convergent series:

� an � � �an � �an� � �an�� � � �an � �an�� � � �an �.

Therefore, � an converges. ■

EXAMPLE 3 Using Absolute Convergence

Show that 

�
�

n�0

�
�sin

n!
x�n

�

converges for all x.

SOLUTION

Let x be any real number. The series

�
�

n�0

�
�sin

n!
x �n
�

has no negative terms, and it is term-by-term less than or equal to the series  
��

n�0 �1/n!�, which we know converges to e. Therefore,

�
�

n�0

�
�sin

n!
x �n
�

converges by direct comparison. Since 

�
�

n�0

�
�sin

n!
x�n

�

converges absolutely, it converges. Now try Exercise 5.

Ratio Test
Our strategy for finding the radius of convergence for an arbitrary power series will be to
check for absolute convergence using a powerful test called the Ratio Test.

THEOREM 8 Absolute Convergence Implies Convergence

If � �an� converges, then � an converges.

We can apply our test to � �an � (which certainly has no negative terms); if � �an� converges,
then � an converges.

DEFINITION Absolute Convergence

If the series � �an� of absolute values converges, then � an converges absolutely.
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Proof
(a) L 
 1:

Choose some number r such that L 
 r 
 1. Since 

lim
n→�

�
a
a
n�

n

1� � L,

we know that there is some N large enough so that  an�1�an is arbitrarily close to L for all 
n � N. In particular, we can guarantee that for some N large enough, �an�1�an� 
 r for all
n � N. (See Figure 9.12.)
Thus,

�
a
a
N

N

�1� 
 r so aN�1 
 raN

�
a
a

N

N

�

�1

2� 
 r so aN�2 
 raN�1 
 r2aN

�
a
a

N

N

�

�

3

2
� 
 r so aN�3 
 raN�2 
 r 3aN

...

.
This shows that for n � N we can dominate � an by aN �1 � r � r2 � … �. Since 0 
 r 
 1,
this latter series is a convergent geometric series, and so � an converges by the Direct Com-
parison Test.

(b) L � 1:

From some index M,

�
a
a
n�

n

1� � 1

for all n � M. In particular,

aM 
 aM�1 
 aM�2 
 … .

The terms of the series do not approach 0, so � an diverges by the nth-Term Test.

(c) L � 1:

In Exploration 1 you will finish the proof by showing that the Ratio Test is inconclusive
when L � 1. ■

A Note on Absolute Convergence: The proof of the Ratio Test shows that the conver-
gence of a power series inside its radius of convergence is absolute convergence, a
stronger result than we first stated in Theorem 5. We will learn more about the distinction
between convergence and absolute convergence in Section 9.5. 

THEOREM 9 The Ratio Test

Let � an be a series with positive terms, and with

lim
n→�

�
a
a
n�

n

1� � L.

Then,

(a) the series converges if L 
 1,

(b) the series diverges if L � 1,

(c) the test is inconclusive if L � 1.

open interval
around L

( (

L r 1

Figure 9.12 Since

lim
n→�

�
a

a
n�

n

1� � L,

there is some N large enough so that
an�1�an lies inside this open interval
around L for all n � N. This guarantees
that an�1�an 
 r 
 1 for all n � N.

L’Hôpital’s rule is occasionally helpful in

determining the limits that arise here.
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508 Chapter 9 Infinite Series

EXAMPLE 4 Finding the Radius of Convergence

Find the radius of convergence of

�
�

n�0

�
n
10

x
n

n

� .

SOLUTION

We check for absolute convergence using the Ratio Test. 

lim
n→�

� lim
n→�

�
�n �

1
1
0
�
n�

�x
1

n�1 �
� • �

n
1
�
0
xn

n

�
�

� lim
n→� (�n �

n
1

� ) �

Setting �x � �10 
 1, we see that the series converges absolutely (and hence converges)
for  �10 
 x 
 10. The series diverges for �x � � 10, which means (by Theorem 5, the
Convergence Theorem for Power Series) that it diverges for x � 10 and for x 
 �10.
The radius of convergence is 10. Now try Exercise 9.

EXAMPLE 5 A Series with Radius of Convergence 0

Find the radius of convergence of the series �
�

n�0

n!xn.

SOLUTION

We check for absolute convergence using the Ratio Test.

lim
n→�

�
�a
�a

n�

n �
1 �� � lim

n→�
�
(n �

n
1
!�
)
x
!�
�n
x �n�1

�

� lim
n→�

(n � 1)�x �

� �, x 	 0

The series converges only for x � 0. The radius of convergence is R � 0.
Now try Exercise 17.

�x �
�
10

�x �
�
10

�an�1 ��
�an �

Finishing the Proof of the Ratio Test

Consider

�
�

n�1

�
1
n

� and �
�

n�1

�
n
1
2� .

(We will refer to them hereafter in this exploration as � 1�n and � 1�n2.)

1. Show that the Ratio Test yields L � 1 for both series.

2. Use improper integrals to find the areas shaded in Figures 9.13a and 9.13b for
1 � x 
 �.

3. Explain how Figure 9.14a shows that � 1�n diverges, while Figure 9.14b shows
that  � 1�n2 converges.

4. Explain how this proves the last part of the Ratio Test.

EXPLORATION 1

x

y

1

y = 1
x

(a)

x

y

1

y = 1
x2

(b)

Figure 9.13 Find these areas. 
(Exploration 1)

x

y

1

y = 1
x

2 3 4 5

(a)

x

y

1

y = 1
x2

2 3 4 5

(b)

Figure 9.14 The areas of the rectangles
form a series in each case. (Exploration 1)
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Endpoint Convergence
The Ratio Test, which is really a test for absolute convergence, establishes the radius of
convergence for � �cn�x � a�n �. Theorem 5 guarantees that this is the same as the radius
of convergence of � cn�x � a�n. Therefore, all that remains to be resolved about the con-
vergence of an arbitrary power series is the question of convergence at the endpoints of the
convergence interval when the radius of convergence is a finite, nonzero number. 

Revisiting a Maclaurin Series

For what values of x does the series 

x � �
x
2

2

� � �
x
3

3

� � … � ��1�n�1 �
x
n

n

� � …

converge?

1. Apply the Ratio Test to determine the radius of convergence.

2. Substitute the left-hand endpoint of the interval into the power series. Use 
Figure 9.14a of Exploration 1 to help you decide whether the resulting series
converges or diverges.

3. Substitute the right-hand endpoint of the interval into the power series. You
should get 

1 � �
1
2

� � �
1
3

� � �
1
4

� � … � �
��1

n
�n�1

� � … .

Chart the progress of the partial sums of this series geometrically on a number
line as follows: Start at 0. Go forward 1. Go back 1�2. Go forward 1�3. Go back
1�4. Go forward 1�5, and so on.

4. Does the series converge at the right-hand endpoint? Give a convincing argument
based on your geometric journey in part 3. 

5. Does the series converge absolutely at the right-hand endpoint?

EXPLORATION 2

EXAMPLE 6 Determining Convergence of a Series

Determine the convergence or divergence of the series �
�

n�0

�
5n

3
�

n

1
�.

SOLUTION We use the Ratio Test.

lim
n→�

�
a
a
n�

n

1� � lim
n→�

� lim
n→� ��5n�

3n

1

�

�

1

1
����5

n

3
�
n

1
��

� lim
n→�

3��5
5
n�

n

1
�

�

1
1

��

� lim
n→�

3 Divide numerator and denominator by 5n.

� �
3
5

�

The series converges because the ratio 3�5 
 1. Now try Exercise 31.

1 � �
5
1
n�

�
5 � �

5
1
n�

�
5n�

3n

1

�

�

1

1
�

��
�
5n

3
�

n

1
�
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The question of convergence of a power series at an endpoint is really a question about the
convergence of a series of numbers. If the series is geometric with first term a and common
ratio r, then the series converges to a��1 � r� if �r � 
 1 and diverges if �r � � 1. Another type
of series whose sums are easily found are telescoping series, as illustrated in Example 7.

EXAMPLE 7 Summing a Telescoping Series

Find the sum of �
�

n�1

�
n�n

1
� 1�
� .

SOLUTION

Use partial fractions to rewrite the nth term.

�
n�n

1
� 1�
� � �

1
n

� � �
n �

1
1

�

We compute a few partial sums to find a general formula.

s1 � 1 � �
1
2

�

s2 � (1 � �
1
2

� ) � ( �
1
2

� � �
1
3

� ) � 1 � �
1
3

�

s3 � (1 � �
1
2

� ) � ( �
1
2

� � �
1
3

� ) � ( �
1
3

� � �
1
4

� ) � 1 � �
1
4

�

We can see that, in general,

sn � 1 � �
1
n

� ,

because all the terms between the first and last cancel when the parentheses are removed.
Therefore, the sum of the series is

S � lim
n→�

sn � 1.
Now try Exercise 48.

The final section of this chapter will formalize some of the strategies used in Explo-
ration 2 and Example 7 and will develop additional tests that can be used to determine se-
ries behavior at endpoints.

Telescoping Series

We call the series in Example 7 a tele-

scoping series because its partial sums

collapse like an old handheld telescope.

Quick Review 9.4 (For help, go to Sections 2.2 and 9.1.)

In Exercises 1–5, find the limit of the expression as n→�. Assume x
remains fixed as n changes.

1. �
n
n
�

�x �

1
� �x �

2. �
n
n

2

�
�

n
x
�

�

1
3
�
�

� �x � 3�

3. �
�

n
x

!
�n
� 0

4. �
�n

�
�

2n
1
�
�
4

4x2

� x2/16

5. �
2
�2

n�

x
1
�

�2
1
x

�

�

n�1

1
2
�

n

n� �
�2x

2

� 1�
�

In Exercises 6–10, let an be the nth term of the first and bn the nth
term of the second series. Find the smallest positive integer N for
which  an � bn for all n � N. Identify an and bn.

6. � 5n, �n2 an � n2, bn � 5n, N � 6

7. � n5, � 5n an � 5n, bn � n5, N � 6

8. � ln n, ��n	 an � �n	, bn � ln n, N � 1

9. � �
1
1
0n� , � �

n
1
!
� an � �

1
1
0n�, bn � �

n
1
!
�, N � 25

10. � �
n
1

2� , �n�3 an � �
n
1
2�, bn � n�3, N � 2
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In Exercises 1 and 2, find the values of x for which the equation is an
identity. Support your answer graphically.

1. �
x
�

�

1
4

� � 1 �(x � 5) � (x � 5)2 � (x � 5)3 � …

2. �
1 �

1
x

� � 1 � x � x2 � x3 � …

In Exercises 3 and 4, use a comparison test to show that the series
converges for all x.

3. �
�

n�0

�
2n!

x3

�

n

1
� See page 512. 4. �

�

n�0

�
n!

x

�

2n

2
� See page 512.

In Exercises 5 and 6, show that the series converges absolutely.

5. �
�

n�0

�
(
n
c
!
o
�

s x
1
)n

� See page 512. 6. �
�

n�0

�
2
n
(s
!
i
�

n x
3
)n

� See page 512.

In Exercises 7–22, find the radius of convergence of the power
series.

7. �
�

n�0

x n 1 8. �
�

n�0

�x � 5�n 1

9. �
�

n�0

��1�n�4x � 1�n 1/4 10. �
�

n�1

�
�3x �

n
2�n

� 1/3

11. �
�

n�0

�
�x

1
�

0n

2�n

� 10 12. �
�

n�0

�
n
n
�

xn

2
� 1

13. �
�

n�1

�
n�

x

n	

n

3n
� 3 14. �

�

n�0

�
x2

n

n

!

�1

� �

15. �
�

n�0

�
n�x

5
�

n

3�n

� 5 16. �
�

n�0

�
4n�n

n
2
x

�

n

1�
� 4

17. �
�

n�0

n!�x � 4�n 0 18. �
�

n�0

�
�

3
n	

n

xn

� 3

19. �
�

n�0

��2�n�n � 1��x � 1�n 1/2 20. �
�

n�1

�
�4x �

n3
5
�2
�2n�1

� 1/4

21. �
�

n�1

�
�x

�

�

n	

p�n

� 1 22. �
�

n�0

�
�x � �

2n

2	�2n�1

� �2	

In Exercises 23–28, find the interval of convergence of the series and,
within this interval, the sum of the series as a function of x.

23. �
�

n�0

�
�x �

4n

1�2n

� See page 512. 24. �
�

n�0

�
�x �

9n

1�2n

� See page 512.

25. �
�

n�0
(�

�
2
x	
� � 1)n

See page 512.26. �
�

n�0

�ln x�n See page 512.

27. �
�

n�0
(�x2

3
� 1
� )n

See page 512. 28. �
�

n�0
(�

sin
2

x
� )n

See page 512.

In Exercises 29–44, determine the convergence or divergence of the
series. Identify the test (or tests) you use. There may be more than one
correct way to determine convergence or divergence of a given series.

29. �
�

n�1

�
n �

n
1

� 30. �
�

n�1

�
n

2
�

n

1
�

31. �
�

n�1

�
n2

2
�
n

1
� 32. �

�

n�1

��
8
1
n�

33. �
�

n�1

�
3n

2
�

n

1
� 34. �

�

n�1

n sin ( �
1
n

� )
35. �

�

n�0

n2e�n 36. �
�

n�0

�
1
n
0

10

n�

37. �
�

n�1

�
�
3
n
!
�

n!3
3

n

�!
� 38. �

�

n�1
(1 � �

1
n

� )n

39. �
�

n�0

�
��

3
2
n

�n

� 40. �
�

n�1

n!e�n

41. �
�

n�1

�
n

3
3

n

2n� 42. �
�

n�1

�
n

2
ln

n

n
�

43. �
�

n�1

�
�2n

n
�

!
1�!

�

44. �
�

n�1

�
n
n!

n�
(Hint: If you do not recognize L, try recognizing the
reciprocal of L.)

45. Give an example to show that the converse of the nth-Term Test is
false. That is, � an might diverge even though  limn→� an � 0.

46. Find two convergent series  � an and  � bn such that 
� �an �bn � diverges One possible answer: an � 2�n and bn � 3�n.

47. Writing to Learn We reviewed in Section 9.1 how to find the
interval of convergence for the geometric series ��

n�0 x n. Can
we find the interval of convergence of a geometric series by
using the Ratio Test? Explain. See page 512.

In Exercises 48–54, find the sum of the telescoping series.

48. �
�

n�1

�
�4n � 3�

4
�4n � 1�
� 1 49. �

�

n�1

�
�2n � 1�

6
�2n � 1�
� 3

50. �
�

n�1

5 51. �
�

n�1

�
n2

2
�
n
n

�

�

1
1�2� 1

52. �
�

n�1
(�

�

1

n	
� � �

�n	
1

�	 1	
� ) 1

53. �
�

n�1
(�ln �n

1
� 2�
� � �

ln �n
1
� 1�
� ) �1/ln 2

54. �
�

n�1

�tan�1 �n� � tan�1 �n � 1�� ���4

40n
���
�2n � 1�2�2n � 1�2

Section 9.4 Exercises

Diverges (nth-Term 
Test)

Converges (Ratio
Test)

Converges (Ratio
Test)

Converges (Ratio
Test)

Converges (Ratio
Test)

Converges (Ratio
Test)

Converges (Ratio
Test)

Converges (Ratio Test)

Converges (Ratio
Test, Direct 
Comparison Test)

Converges 
(geometric series)

Converges 
(geometric series)

Diverges 
(nth-Term Test)

Diverges 
(nth-Term Test)

Diverges (nth-Term 
Test, Ratio Test)

Diverges (nth-Term 
Test, Ratio Test)

Diverges (nth-Term 
Test, Ratio Test)

45. One possible answer:


�
1
n

� diverges (see Exploration 1 in this section) even though lim
n→�

�
1
n

� � 0.
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512 Chapter 9 Infinite Series

Standardized Test Questions
You may use a graphing calculator to solve the following 
problems.

55. True or False If a series converges absolutely, then it converges.
Justify your answer. True. See Theorem 8.

56. True or False If the radius of convergence of a power series 
is 0, then the series diverges for all real numbers. Justify your 
answer.

57. Multiple Choice Which of the following gives lim
n→�

�
a
a
n�

n

1�

for the series �
�

n�0

�
(�

2
3

n

)n�? B

(A) �3�2 (B) �2�3 (C) 1 (D) 0 (E) �

58. Multiple Choice Which of the following gives the radius of 

convergence of the series �
�

n�1

�
(2x �

n
3)n

�? C

(A) 2 (B) 1 (C) 1�2 (D) 0 (E) �

59. Multiple Choice Which of the following describes the 

behavior of the series �
�

n�1

�
(s
2
i
n

n
n
x
2
)n

�? E

I. diverges

II. converges

III. converges absolutely

(A) I only (B) II only (C) III only

(D) I & II only (E) II & III only

60. Multiple Choice Which of the following gives the sum of

the telescoping series �
�

n�1

�
(3n � 1)

3
(3n � 2)
�? D

(A) 3�10 (B) 3�8 (C) 9�22 (D) 1�2 (E) The series diverges.

Explorations
Group Activity Nondecreasing Sequences As you already
know, a nondecreasing (or increasing) function f �x� that is bounded
from above on an interval �a, �) has a limit as  x→� that is less than
or equal to the bound. The same is true of sequences of numbers. 
If  s1 � s2 � s3 � … � sn … and there is a number M such that 
�sn � � M for all n, then the sequence converges to a limit  S � M. You
will need this fact as you work through Exercises 61 and 62. 

61. Proof of the Direct Comparison Test, Part a Let � an

be a series with no negative terms, and let � cn be a convergent
series such that  an � cn for all n � N, for some integer N.

(a) Show that the partial sums of � an are bounded above by 

a1 � … � aN � �
�

n�N�1

cn.

(b) Explain why this shows that � an must converge.

62. Proof of the Direct Comparison Test, Part b Let � an

be a series with no negative terms, and let  � dn be a divergent
series of nonnegative terms such that an � dn for all n � N, for
some integer N.

(a) Show that the partial sums of � dn are bounded above by 

d1 � … � dN � �
�

n�N�1

an.

(b) Explain why this leads to a contradiction if we assume that
� an converges.

63. Group Activity Within your group, have each student make
up a power series with radius of convergence equal to one of the
numbers 1, 2, … , n. Then exchange series with another group
and match the other group’s series with the correct radii of
convergence. Answers will vary.

Extending the Ideas
64. We can show that the series 

�
�

n�0

�
n
2n

2

�

converges by the Ratio Test, but what is its sum? The sum is 6.

To find out, express 1��1 � x� as a geometric series. Differ-
entiate both sides of the resulting equation with respect to x,
multiply both sides of the result by x, differentiate again,
multiply by x again, and set x equal to 1�2. What do you get?
(Source: David E. Dobbs’s letter to the editor, Illinois
Mathematics Teacher, Vol. 33, Issue 4, 1982, p. 27.)

3. �
2n

x
!

3

�

n

1
� � �

x
n

3

!

n

� � �
(x

n

3

!
)n

� and 

�

n�0
�
(x

n

3

!
)n

� is the Taylor series for ex3
which 

converges for all x.

4. �
n!

x
�

2n

2
� � �

x
n

2

!

n

� � �
(x

n

2

!

)n

� and 

�

n�0

�
(x

n

2

!

)n

� is the Tayalor series for ex2

which converges for all x.

5. ��(n
c
!
os

�

x)
1

n
�� � ��(co

n
s
!
x)n
�� � �

n
1
!
� and 


�

n�0

�
n
1
!
� converges to e.

6. ��2n
(s
!
i
�

n x
3
)n

��� �
�2(si

n

n

!

x)n�
� � �

n
2
!
� and 


�

n�0

�
n
2
!
� converges to 2e.

23. Interval: �1 
 x 
 3 24. Interval: �4 
 x 
 2

Sum: ��
x2 � 2

4
x � 3
� Sum: ��

x2 � 2
9
x � 8
�

25. Interval: 0 
 x 
 16 26. Interval: 1/e 
 x 
 e

Sum: �
4 �

2
�x	
� Sum: �

1 �

1
ln x
�

27. Interval: �2 
 x 
 2 28. Interval: �� 
 x 
 �

Sum: �
4 �

3
x2� Sum: �

2 �

2
sin x
�

47. Almost, but the Ratio Test won’t determine whether there is convergence
or divergence at the endpoints of the interval.

56. False. The power series 

�

n�0

cn(x � a)n always converges at x � a.
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Testing Convergence at Endpoints

Integral Test
In Exploration 1 of Section 9.4, you showed that � 1�n diverges by modeling it as a sum of
rectangle areas that contain the area under the curve y � 1�x from 1 to �. You also showed
that � 1�n2 converges by modeling it as a sum of rectangle areas contained by the area
under the curve y � 1�x2 from 1 to �. This area-based convergence test in its general form
is known as the Integral Test.

9.5

What you’ll learn about 

• Integral Test

• Harmonic Series and p-series

• Comparison Tests

• Alternating Series

• Absolute and Conditional 
Convergence

• Intervals of Convergence

• A Word of Caution

. . . and why 

Additional tests for convergence
of series are introduced in this
section.

THEOREM 10 The Integral Test

Let {an} be a sequence of positive terms. Suppose that an � f �n�, where f is a con-
tinuous, positive, decreasing function of x for all x � N (N a positive integer). Then
the series ��

n�N an and the integral ��
N

f �x� dx either both converge or both diverge. 

Proof We will illustrate the proof for N � 1 to keep the notation simple, but the illustra-
tion can be shifted horizontally to any value of N without affecting the logic of the proof. 

The proof is entirely contained in these two pictures (Figure 9.15):

x

y

0 1

y � f(x)

2 n3 n � 1

a1 a2

an

(a)

x

y

0 1 2 n3 n � 1

a1
a3

an

(b)

a2

y � f (x)

Figure 9.15 (a) The sum a1 � a2 � … � an provides an upper bound for �1
n�1

f �x� dx. (b) The
sum a2 � a3 � … � an provides a lower bound for �1

n
f �x� dx. (Theorem 10)

We leave it to you (in Exercise 52) to supply the words. ■

EXAMPLE 1 Applying the Integral Test

Does �
�

n�1

�
n�

1

n	
� converge?

SOLUTION

The Integral Test applies because

f �x� � �
x�

1

x	
� 

is a continuous, positive, decreasing function of x for  x � 1.

We have

�
1

�

�
x�

1

x	
� dx � lim

k→�
�k

1

x�3�2 dx � lim
k→� [�2x�1�2 ] k

1

� lim
k→� (��

�
2

k	
� � 2) � 2.

Since the integral converges, so must the series. Now try Exercise 1.

Caution

The series and the integral in the 

Integral Test need not have the same

value in the convergent case. Although

the integral converges to 2 in Example 1,

the series might have a quite different

sum. If you use your calculator to com-

pute or graph partial sums for the se-

ries, you can see that the 11th partial

sum is already greater than 2. The Tech-

nology Resource Manual contains two

programs, PARTSUMT, which displays

partial sums in table form, and

PARTSUMG, which displays partial 

sums graphically.
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514 Chapter 9 Infinite Series

Figure 9.17 On a guitar, the second 
harmonic note is produced when the finger
is positioned halfway between the bridge
and nut of the string while the string is
plucked with the other hand.

Harmonic Series and p-series
The Integral Test can be used to settle the question of convergence for any series of the form
��

n�1�1�np�, p a real constant. (The series in Example 1 had this form, with p � 3�2.) Such
a series is called a p-series.

The p-Series Test

1. Use the Integral Test to prove that ��
n�1 �1�np� converges if p � 1.

2. Use the Integral Test to prove that ��
n�1 �1�np� diverges if p 
 1.

3. Use the Integral Test to prove that ��
n�1 �1�np� diverges if p � 1.

EXPLORATION 1

The p-series with p � 1 is the harmonic series, and it is probably the most famous di-
vergent series in mathematics. The p-Series Test shows that the harmonic series is just
barely divergent; if we increase p to 1.000000001, for instance, the series converges! 

The slowness with which the harmonic series approaches infinity is most impressive.
Consider the following example. 

EXAMPLE 2 The Slow Divergence of the Harmonic Series

Approximately how many terms of the harmonic series are required to form a partial
sum larger than 20?

SOLUTION

Before you set your graphing calculator to the task of finding this number, you might want
to estimate how long the calculation might take. The graphs tell the story (Figure 9.16). 

What is harmonic about the 
harmonic series?

The terms in the harmonic series 

correspond to the nodes on a vibrating

string that produce multiples of the 

fundamental frequency. For example, 1/2

produces the harmonic that is twice the

fundamental frequency, 1/3 produces a

frequency that is three times the funda-

mental frequency, and so on. The funda-

mental frequency is the lowest note or

pitch we hear when a string is plucked.

(Figure 9.17)

x

y
y = 

1

1 + 1
2

2 3 4

(a)

+ 1
3

+ 1
4

1
x

x

y

1

ln 4

4

(b)

1

y = 1x

Figure 9.16 Finding an upper bound for one of the partial sums of the harmonic series. (Example 2)

Let Hn denote the nth partial sum of the harmonic series. Comparing the two graphs, we
see that  H4 
 �1 � ln 4� and (in general) that Hn � �1 � ln n�.  If we wish Hn to be
greater than 20, then

1 � ln n � Hn � 20

1 � ln n � 20

ln n � 19

n � e19.

The exact value of e19 rounds up to 178,482,301. It will take at least that many terms of
the harmonic series to move the partial sums beyond 20. It would take your calculator
several weeks to compute a partial sum of this many terms. Nonetheless, the harmonic
series really does diverge! Now try Exercise 3.
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Comparison Tests
The p-Series Test tells everything there is to know about the convergence or divergence of
series of the form � �1�np�. This is admittedly a rather narrow class of series, but we can
test many other kinds (including those in which the nth term is any rational function of n)
by comparing them to p-series. 

The Direct Comparison Test (Theorem 7, Section 9.4) is one method of comparison,
but the Limit Comparison Test is another.

THEOREM 11 The Limit Comparison Test (LCT)

Suppose that an � 0 and bn � 0 for all n � N (N a positive integer).

1. If  lim
n→�

�
a
bn

n� � c, 0 
 c 
 �, then � an and � bn both converge or both diverge.

2. If  lim
n→�

�
a
bn

n� � 0 and � bn converges, then � an converges.

3. If  lim
n→�

�
a
bn

n� � � and � bn diverges, then � an diverges.

We omit the proof. 

EXAMPLE 3 Using the Limit Comparison Test

Determine whether the series converge or diverge.

(a) �
3
4

� � �
5
9

� � �
1
7
6
� � �

2
9
5
� � … � �

�

n�1

�
�
2
n
n
�

�

1
1
�2�

(b) �
1
1

� � �
1
3

� � �
1
7

� � �
1
1
5
� � … � �

�

n�1

�
2n

1
� 1
�

(c) �
8
4

� � �
1
2
1
1
� � �

1
5
4
6
� � �

1
1
1
7
5

� � … � �
�

n�2

�
n
3
3
n
�

�

2
2
n

�

(d) sin 1 � sin �
1
2

� � sin �
1
3

� � … � �
�

n�1

sin ( �
1
n

� )
SOLUTION

(a) For n large, �
�
2
n
n
�

�

1
1
�2� behaves like �

2
n
n
2� � �

2
n

� ,

so we compare terms of the given series to terms of  � �1�n� and try the LCT. 

lim
n→�

�
a
bn

n� � lim
n→�

� lim
n→�

�
�
2
n
n
�

�

1
1
�2� • �

n
1

�

Applying l’Hôpital’s rule, lim
n→�

�
(
2
n
n2

�

�

1)
n
2� � lim

n→�
�
2
4
(
n
n

�

�

1
1)

� � 2.

Since the limit is positive and  � �1�n� diverges,

�
�

n�1

�
�
2
n
n
�

�

1
1
�2�

also diverges.

�2n � 1���n � 1�2

��
1�n

continued
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516 Chapter 9 Infinite Series

(b) For n large, 1��2n � 1� behaves like  1�2n, so we compare the given series to 
� �1�2n�.

lim
n→�

�
a
bn

n� � lim
n→�

�
2n

1
� 1
� • �

2
1

n

�

� lim
n→�

�
2n

2
�

n

1
�

� lim
n→�

�
1 � �

1
1�2n�
� � 1

Since  � �1�2n� converges �geometric, r � 1�2�, the LCT guarantees that

�
�

n�1

�
2n

1
� 1
�

also converges.

(c) For n large,

�
n
3
3
n
�

�

2
2
n

�

behaves like  3�n2, so we compare the given series to  � �1�n2 �.

lim
n→�

�
a
bn

n� � lim
n→�

�
n
3
3
n
�

�

2
2
n

� • �
n
1

2

�

� lim
n→�

�
3
n
n

3

3

�

�

2
2

n
n2

� � 3

Since  � �1�n2 � converges by the p-Series Test,

�
�

n�2

�
n
3
3
n
�

�

2
2
n

�

also converges (by the LCT).

(d) Recall that 

lim
x→0

�
sin

x
x

� � 1,

so we try the LCT by comparing the given series to  � �1�n�.

lim
n→�

�
a
bn

n� � lim
n→�

� 1

Since  � �1�n� diverges, ��
n�1 sin �1�n� also diverges. Now try Exercise 5.

As Example 3 suggests, applying the Limit Comparison Test has strong connections to
analyzing end behavior in functions. In part (c) of Example 3, we could have reached the
same conclusion if an had been any linear polynomial in n divided by any cubic polynomial
in n, since any such rational function “in the end” will grow like 1�n2.

sin �1�n�
�

�1�n�
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Alternating Series
A series in which the terms are alternately positive and negative is an alternating series.

Here are three examples.

1 � �
1
2

� � �
1
3

� � �
1
4

� � �
1
5

� � … � �
��1

n
�n�1

� � … (1)

�2 � 1 � �
1
2

� � �
1
4

� � �
1
8

� � … � �
��1

2
�
n

n4
� � … (2)

1 � 2 � 3 � 4 � 5 � 6 � … � ��1�n�1n � … (3)

Series 1, called the alternating harmonic series, converges, as we will see shortly. (You
may have come to this conclusion already in Exploration 2 of Section 9.4.) Series 2, a geo-
metric series with a � �2, r � �1�2, converges to �2� �1 � �1�2�
 � �4�3. Series 3 
diverges by the nth-Term Test.

We prove the convergence of the alternating harmonic series by applying the following
test.

THEOREM 12 The Alternating Series Test (Leibniz’s Theorem)

The series

�
�

n�1

��1�n�1un � u1 � u2 � u3 � u4 � …

converges if all three of the following conditions are satisfied:

1. each un is positive;

2. un � un�1 for all n � N, for some integer N;

3. limn→� un→0.

Figure 9.18 illustrates the convergence of the partial sums to their limit L.

x
LO

�u1

�u2

�u3

�u4

S 2 S 4 S 1S 3

Figure 9.18 Closing in on the sum of a convergent alternating series. (Theorem 12)

The figure that proves the Alternating Series Test actually proves more than the fact of
convergence; it also shows the way that an alternating series converges when it satisfies
the conditions of the test. The partial sums keep “overshooting” the limit as they go back
and forth on the number line, gradually closing in as the terms tend to zero. If we stop at
the nth partial sum, we know that the next term ��un�1) will again cause us to overshoot
the limit in the positive direction or negative direction, depending on the sign carried by
un�1. This gives us a convenient bound for the truncation error, which we state as another
theorem.
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518 Chapter 9 Infinite Series

EXAMPLE 4 The Alternating Harmonic Series

Prove that the alternating harmonic series is convergent, but not absolutely convergent.
Find a bound for the truncation error after 99 terms. 

SOLUTION

The terms are strictly alternating in sign and decrease in absolute value from the start:

1 � �
1
2

� � �
1
3

� � … . Also, �
1
n

� → 0. 

By the Alternating Series Test,

�
�

n�1

�
��1

n
�n�1

�

converges.

On the other hand, the series ��
n�1 �1�n� of absolute values is the harmonic series,

which diverges, so the alternating harmonic series is not absolutely convergent. 

The Alternating Series Estimation Theorem guarantees that the truncation error after 99
terms is less than u99�1 � 1��99 � 1� � 1�100. Now try Exercise 23.

Absolute and Conditional Convergence
Because the alternating harmonic series is convergent but not absolutely convergent, we say
it is conditionally convergent (or converges conditionally). 

We take it for granted that we can rearrange the terms of a finite sum without affecting
the sum. We can also rearrange a finite number of terms of an infinite series without af-
fecting the sum. But if we rearrange an infinite number of terms of an infinite series, we
can be sure of leaving the sum unaltered only if it converges absolutely.

A Note on the Error Bound

Theorem 13 does not give a formula for

the truncation error, but a bound for the

truncation error. The bound might be 

fairly conservative. For example, the first

99 terms of the alternating harmonic

series add to about 0.6981721793, 

while the series itself has a sum of 

ln 2 � 0.6931471806. That makes the

actual truncation error very close to

0.005, about half the size of the bound

of 0.01 given by Theorem 13.

Rearrangements of Absolutely Convergent Series

If � an converges absolutely, and if b1, b2, b3, … , bn, … is any rearrangement of
the sequence {an}, then � bn converges absolutely and ��

n�1 bn � ��
n�1 an.

Rearrangements of Conditionally Convergent Series

If � an converges conditionally, then the terms can be rearranged to form a diver-
gent series. The terms can also be rearranged to form a series that converges to any
preassigned sum.

On the other hand, consider this:

THEOREM 13 The Alternating Series Estimation Theorem

If the alternating series ��
n�1 ��1�n�1un satisfies the conditions of Theorem 12, then

the truncation error for the nth partial sum is less than un�1 and has the same sign as
the first unused term.

This seems incredible, but it is a logical consequence of the definition of the sum as the limit
of the sequence of partial sums. A conditionally convergent series consists of positive terms
that sum to � and negative terms that sum to ��, so we can manipulate the partial sums to do
virtually anything we wish. We illustrate the technique with the alternating harmonic series.
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EXAMPLE 5 Rearranging the Alternating Harmonic Series

Show how to rearrange the terms of

�
�

n�1

�
��1

n
�n�1

�

to form

(a) a divergent series; (b) a series that converges to p.

SOLUTION

The series of positive terms,

1 � �
1
3

� � �
1
5

� � … � �
2n

1
� 1
� � … ,

diverges to �, while the series of negative terms,

� �
1
2

� � �
1
4

� � �
1
6

� � … � �
2
1
n
� � … ,

diverges to ��. No matter what finite number of terms we use, the remaining positive
terms or negative terms still diverge. So, we build our series as follows:

(a) Start by adding positive terms until the partial sum is greater than 1. Then add nega-
tive terms until the partial sum is less than �2. Then add positive terms until the sum is
greater than 3. Then add negative terms until the sum is less than �4. Continue in this
manner indefinitely, so that the sequence of partial sums swings arbitrarily far in both
directions and hence diverges.

(b) Start by adding positive terms until the partial sum is greater than p. Then add negative
terms until the partial sum is less than p. Then add positive terms until the sum is greater
than p. Continue in this manner indefinitely, always closing in on p. Since the positive and
negative terms of the original series both approach zero, the amount by which the partial
sums exceed or fall short of p approaches zero. Now try Exercise 33.

Intervals of Convergence
Our purpose in this section has been to develop tests for convergence that can be used at
the endpoints of the intervals of absolute convergence of power series. There are three pos-
sibilities at each endpoint: The series could diverge, it could converge absolutely, or it
could converge conditionally.

How to Test a Power Series �
�

n�0
cn(x � a)n for Convergence

1. Use the Ratio Test to find the values of x for which the series converges 
absolutely. Ordinarily, this is an open interval

a � R 
 x 
 a � R.

In some instances, the series converges for all values of x. In rare cases, the series
converges only at x � a.

2. If the interval of absolute convergence is finite, test for convergence or diver-
gence at each endpoint. The Ratio Test fails at these points. Use a comparison
test, the Integral Test, or the Alternating Series Test.

3. If the interval of absolute convergence is a � R 
 x 
 a � R, conclude that the
series diverges (it does not even converge conditionally) for �x � a � � R, because
for those values of x the nth term does not approach zero.
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520 Chapter 9 Infinite Series

EXAMPLE 6 Finding Intervals of Convergence

For what values of x do the following series converge?

(a) �
�

n�1

��1�n�1�
x
2

2

n

n

� � �
x
2

2

� � �
x
4

4

� � �
x
6

6

� � …

(b) �
�

n�0

�
�10

n
x
!
�n

� � 1 � 10x � �
10

2
0
!
x2

� � �
100

3
0
!

x3

� � …

(c) �
�

n�0

n!�x � 1�n � 1 � �x � 1� � 2!�x � 1�2 � 3!�x � 1�3 � …

(d) �
�

n�1

�
�x �

2n
3�n

� � �
�x �

2
3�

� � �
�x �

4
3�2

� � �
�x �

6
3�3

� � …

SOLUTION

We apply the Ratio Test to find the interval of absolute convergence, then check the end-
points if they exist.

(a) lim
n→� ��uu

n�

n

1� � � lim
n→�

�
2
x
n

2n

�

�2

2
� • �

x
2

2
n
n�

� lim
n→� (�2n

2
�

n
2

� )x2

� lim
n→� ��

2
2

��x2 Apply l’Hôpital’s rule.

� x2

The series converges absolutely for x2 
 1, i.e., on the interval ��1, 1�. At  x � 1, the
series is 

� �
��1

2
�
n

n�1

� ,

which converges by the Alternating Series Test. ( It is half the sum of the alternating har-
monic series.) At  x � �1, the series is the same as at x � 1, so it converges. The inter-
val of convergence is ��1, 1
.

(b) lim
n→� ��uu

n�

n

1� � � lim
n→�

�
�

�
1
n
0
�

x �n

1

�

�!

1

� • �
�1

n
0
!
x �n�

� lim
n→�

�
n
�1

�

0x
1
�

� � 0

The series converges absolutely for all x.

(c) lim
n→� ��uu

n�

n

1� � � lim
n→�

� lim
n→�

�n � 1��x � 1� � {�, x 	 �1
0, x � �1

The series converges only at x � �1.

(d)  lim
n→� ��uu

n�

n

1� � � lim
n→�

�
�x

2
�

n �

3�n

2

�1

� • �
� x �

2n
3�n�

� lim
n→� (�2n

2
�

n
2

� ) �x � 3� � �x � 3�

�n � 1�!�x � 1 �n�1

���
n!�x � 1�n

continued
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Is lim an � 0?

Is � an � a � ar � ar2 � … ?

Does the series have the

form �
�

n�1

�
n
1

p� ?

Does � �an � converge?
Apply one of the comparison tests,

Integral Test, Ratio Test, or nth-Root
Test (Exercise 73) to            

Is � an � u1 � u2 � u3 � … ?
(an alternating series)

See what you can do with the partial
sums, consult more advanced books,

or explore with a CAS.

Series diverges.

Converges to a��1 � r� if �r � 
 1.
Diverges if �r � � 1.

Series converges if p� 1.
Series diverges if p� 1.

Original series converges.

Is there an integer N such 
that uN � uN�1 � … ?

nth-Term Test

Geometric
Series Test

p-Series Test

nonnegative
terms and/or

absolute
convergence

Alternating
Series Test

Yes   or maybe

No

No

No

No No Yes

No   or maybe

Yes

Procedure for Determining Convergence

Series converges if un→0.
Series diverges if un→0./

Yes

Yes

Yes

� �an �.

The series converges absolutely for �x � 3� 
 1, i.e., on the interval �2, 4�. At x � 2,
the series is � ��1�n�2n, which converges by the Alternating Series Test. At x � 4,
the series is � 1�2n, which diverges by limit comparison with the harmonic series. 
The interval of convergence is �2, 4�. Now try Exercise 41.

To facilitate testing convergence at endpoints we can use the following flowchart.

A Word of Caution
Although we can use the tests we have developed to find where a given power series con-
verges, they do not tell us what function that power series is converging to. Even if the se-
ries is known to be a Maclaurin series generated by a function f, we cannot automatically
conclude that the series converges to the function f on its interval of convergence. That is
why it is so important to estimate the error.
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522 Chapter 9 Infinite Series

For example, we can use the Ratio Test to show that the Maclaurin series for sin x,
cos x, and ex all converge absolutely for all real numbers. However, the reason we know
that they converge to sin x, cos x, and ex is that we used the Remainder Estimation Theo-
rem to show that the respective truncation errors went to zero.

The following exploration shows what can happen with a strange function.

The Maclaurin Series of a Strange Function

0, x � 0
Let f �x� � {e�1�x 2, x 	 0.

It can be shown (although not easily) that f (Figure 9.19) has derivatives of all or-
ders at  x � 0  and that  f �n��0� � 0 for all n. Use this fact as you proceed with the
exploration.

1. Construct the Maclaurin series for f.

2. For what values of x does this series converge?

3. Find all values of x for which the series actually converges to f �x�.

EXPLORATION 2

x

y

0 1 2 3

1

–1–2–3

⎧
⎨
⎩ ,  x ≠ 0

 x = 0
y �

 e–1/x2 

0 ,

Figure 9.19 The graph of the continuous extension of y � e�1�x2 is so flat 
at the origin that all of its derivatives there are zero. 

Quick Review 9.5 (For help, go to Sections 1.2 and 8.3.)

In Exercises 1–5, determine whether the improper integral converges
or diverges. Give reasons for your answer. (You do not need to
evaluate the integral.)

1. ��

1

�
x

1
4�3� dx Converges, p � 1 2. ��

1

�
x3

x
�

2

1
� dx

3. ��

1

�
ln

x
x

� dx 4. ��

1

�
1 �

x
c
2
os x
� dx

5. ��

1

�
x

�
�

x	
1

� dx

In Exercises 6–10, determine whether the function is both positive and
decreasing on some interval �N, ��. (You do not need to identify N.)

6. f �x� � �
3
x

� Yes 7. f �x� � �
x2

7
�

x
8

� Yes

8. f �x� � �
3
3

�

�

x
x

2

2� No 9. f �x� � �
si
x
n
5
x

� No

10. f �x� � ln �1�x� No

If you are surprised by the behavior of the series in Exploration 2, remember that we
identified it up front as a strange function. It was fortunate for the early history of calcu-
lus that the functions that modeled physical behavior in the Newtonian world were much
more predictable, enabling the early theories to enjoy encouraging successes before they
could be lost in detail. When the subtleties of convergence emerged later, the theory was
prepared to confront them.

2. Diverges, limit comparison test with integral of 1/x
3. Diverges, comparison test with integral of 1/x
4. Converges, comparison test with integral of 2/x2

5. Diverges, limit comparison test with integral of 1/�x	
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In Exercises 1and 2, use the Integral Test to determine convergence or
divergence of the series.

1. �
�

n�1

�
�3

1
n	

� 2. �
�

n�1

n�3/2

3. Find the first six partial sums of �
�

n�1

�
1
n

�.

4. If Sk is the k-th partial sum of �
�

n�1

�
1
n

�, find the first value of k for
which Sk � 4. k � 31

In Exercises 5 and 6, use the Limit Comparison Test to determine
convergence or divergence of the series.

5. �
�

n�1

�
3
n
n
2 �

�

1
1

� 6. �
�

n�0

�
3n

2
�

n

1
�

In Exercises 7–22, determine whether the series converges or diverges.
There may be more than one correct way to determine convergence or
divergence of a given series.

7. �
�

n�1

�
n �

5
1

� Diverges 8. �
�

n�1

�
�

3

n	
� Diverges

9. �
�

n�2

�
ln

n
n

� Diverges 10. �
�

n�1

�
2n

1
� 1
� Diverges

11. �
�

n�1

�
�ln

1
2�n� Diverges 12. �

�

n�1

�
�ln

1
3�n� Converges

13. �
�

n�1

n sin ( �
1
n

� ) Diverges 14. �
�

n�0

�
1 �

en

e2n� Converges

15. �
�

n�1

�
n2

�
�

n	
1

� Converges 16. �
�

n�1

�
n2�n

5
�

n3

2
�

��n
3
2
n
� 5�

�

17. �
�

n�1

�
3n�

3

1

n

� 1
� Diverges 18. �

�

n�2

��1�n�1 �
ln

1
n

� Converges

19. �
�

n�1

��1�n�1 �
1
n
0
10

n

� Diverges 20. �
�

n�1

��1�n�1�
�

n
n	
�

�

1
1

�

21. �
�

n�2

��1�n�1�
l
l
n
n

n
n

2� Diverges 22. �
�

n�1
( �

1
n

� � �
n
1

2�) Diverges

In Exercises 23–26, determine whether the series converges absolutely,
converges conditionally, or diverges. Give reasons for your answer.
Find a bound for the truncation error after 99 terms.

23. �
�

n�1

��1�n�1�
1

n
�

2
n

� 24. �
�

n�1

��1�n�1�0.1�n

25. �
�

n�2

��1�n�1�
n l

1
n n
� 26. �

�

n�1

��1�nn2( �
2
3

� )n

In Exercises 27–32, determine whether the series converges absolutely,
converges conditionally, or diverges. Give reasons for your answers.

27. �
�

n�1

��1�n�1 �
2
n

n

!
� Diverges 28. �

�

n�1

��1�n�1�
si
n
n

2
n

�

29. �
�

n�1

�
1

�
�

�1

�

�n

n	
� 30. �

�

n�1

�
c

n

o

�

s n

n	

p
�

31. �
�

n�1

�
cos

n
np
� 32. �

�

n�1

�
�n	 �

��
�
1�

n	

n

�	 1	
�

In Exercises 33 and 34, show how to rearrange the terms of the 
series from the specified exercise to form (a) a divergent series, and
(b) a series that converges to 4.

33. Exercise 23 34. Exercise 25

In Exercises 35–50, find (a) the interval of convergence of the
series. For what values of x does the series converge (b) absolutely,
(c) conditionally?

35. �
�

n�0

xn 36. �
�

n�0

�x � 5�n

37. �
�

n�0

��1�n �4x � 1�n 38. �
�

n�1

�
�3x �

n
2�n

�

39. �
�

n�0

�
�x

1
�

0n

2�n

� 40. �
�

n�0

�
n
n
�

x n

2
�

41. �
�

n�1

�
n�

x

n	

n

3n
� 42. �

�

n�0

�
x2

n

n

!

�1

�

43. �
�

n�0

�
n�x

5
�

n

3�n

� 44. �
�

n�0

�
4n �n

n
2
x n

� 1�
�

45. �
�

n�0

�
�

3
n	

n

xn

� 46. �
�

n�0

n!�x � 4�n

47. �
�

n�0

��2�n �n � 1��x � 1�n 48. �
�

n�1

�
�4x �

n3
5
�2
�2n�1

�

49. �
�

n�1

�
�x

�

�

n	

p�n

� 50. �
�

n�0

�ln x�n

51. Not only do the figures in Example 2 show that the nth partial
sum of the harmonic series is less than 1 � ln n;  they also show
that it is greater than  ln �n � 1�. Suppose you had started
summing the harmonic series with S1 � 1 at the time the universe
was formed, 13 billion years ago. If you had been able to add a
term every second since then, about how large would your partial
sum be today? (Assume a 365-day year.) 40.554 
 sum 
 41.555

52. Writing to Learn Write out a proof of the Integral Test
(Theorem 10) for  N � 1, explaining what you see in Figure
9.15.

Section 9.5 Exercises

Use f(x) � 1/�3
x	, diverges

Use f(x) � 1/x3/2, converges

S1 � 1, S2 � 3/2, S3 � 11/6,
S4 � 25/12, S5 � 137/60,
S6 � 49/20

5. diverges, compare with 
�

n�1
(3/n)

6. converges, compare with  
�

n�1
(2/3)n

Converges

Converges

Converges conditionally; 0.0101 Converges absolutely; 10�100

25. Converges conditionally; � 0.00212
26. Converges absolutely; � 2.46 � 10�14

Converges absolutely

Converges absolutely

Converges conditionally

Converges conditionally Converges conditionally

(a) (�1, 1) (b) (�1, 1)
(c) None

(a) (�6, �4)
(b) (�6, �4)
(c) None

(a) (1/3, 1)
(b) (1/3, 1)
(c) At x � 1/3

(a) All real numbers
(b) All real numbers
(c) None

(a) (�4, 4)   
(b) (�4, 4)   
(c) At x � �4

(a) Only at x � 4
(b) At x � 4   
(c) None

(a) [1, 3/2]   
(b) [1, 3/2]   
(c) None

(a) (�1/2, 0) (b) (�1/2, 0)
(c) None

(a) (�8, 12)
(b) (�8, 12)
(c) None

(a) (�1, 1)   
(b) (�1, 1)   
(c) None

(a) [�3, 3]   
(b) [�3, 3]   
(c) None

(a) (�8, 2)   
(b) (�8, 2)   
(c) None

(a) (�3, 3)   
(b) (�3, 3)   (c) None

(a) (1/2, 3/2)   (b) (1/2, 3/2)
(c) None

(a) (1/e, e)   (b) (1/e, e)
(c) None

49. (a) (�� �1, �� �1)   (b) (�� �1, �� �1)
(c) At x � �� � 1
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524 Chapter 9 Infinite Series

53. (Continuation of Exercise 52) Relabel the pictures for an
arbitrary N and explain why the same conclusions about
convergence can be drawn.

54. In each of the following cases, decide whether the infinite series
converges. Justify your answer.

(a) �
�

k�1

�
�2	k

1

	�	 7	
� (b) �

�

k�1
(1 � �

1
k

� )k

(c) �
�

k�1

�
k2

c

�

os

�
k

k	
� (d) �

�

k�3

�
k �

1
ln
8

k�
�

In Exercises 55 and 56, find the interval of convergence of the series.

55. �
�

n�1

�
nn(

3
x

n

�

n!
2)n

� 56. �
�

n�1

�
n
n

n

!
5
xn

n�

57. Construct a series that diverges more slowly than the harmonic
series. Justify your answer.

58. Let  ak � ��1�k�1�0
1�k 6�kx�2 dx.

(a) Evaluate ak.

(b) Show that  ��
k�1 ak converges.

(c) Show that

1 � �
�

k�1

ak � �
3
2

� .

59. (a) Determine whether the series 

A � �
�

n�1

�
3n2

n
� 1
�

converges or diverges. Justify your answer.

(b) If S is the series formed by multiplying the nth term in A by
the nth term in  ��

n�1 �3�n�, write an expression using summation
notation for S and determine whether S converges or diverges.

60. (a) Find the Taylor series generated by  f �x� � ln �1 � x�  at 
x � 0.  Include an expression for the general term. 

(b) For what values of x does the series in part (a) converge?

(c) Use Theorem 13 to find a bound for the error in evaluating
ln �3�2� by using only the first five nonzero terms of the series
in part (a). 

(d) Use the result found in part (a) to determine the logarithmic
function whose Taylor series is 

�
�

n�1

�
��1�

2

n�

n

1x2n

� .

61. Determine all values of x for which the series 

�
�

k�0

�
ln �

2
k

kx
�

k

2�
�

converges. Justify your answer.

62. Consider the series �
�

n�2

�
np

1
ln n
� , where  p � 0.

(a) Show that the series converges for  p � 1.

(b) Writing to Learn Determine whether the series converges
or diverges for  p � 1. Show your analysis. 

(c) Show that the series diverges for  0 � p 
 1.

63. The Maclaurin series for  1��1 � x� converges for 
�1 
 x 
 1, but when we integrate it term by term, the
resulting series for  ln �1 � x � converges for �1 
 x � 1.
Verify the convergence at  x � 1. Use the Alternating Series Test.

64. The Maclaurin series for  1��1 � x2� converges for
�1 
 x 
 1, but when we integrate it term by term, the resulting
series for arctan x converges for �1 � x � 1.  Verify the
convergence at  x � 1  and  x � �1. Use the Alternating Series Test.

65. (a) The series

�
1
3

� � �
1
2

� � �
1
9

� � �
1
4

� � �
2
1
7
� � �

1
8

� � … � �
3
1

n� � �
2
1

n� � …

fails to satisfy one of the conditions of the Alternating Series
Test. Which one? It fails to satisfy un � un � 1 for all n � N.

(b) Find the sum of the series in part (a). The sum is �1/2.

Standardized Test Questions
You may use a graphing calculator to solve the following 
problems.

66. True or False The series

�
�

n�1

(�1)n�1 �
x
2

2

n

n

�

converges at its endpoints. Justify your answer.

67. True or False If S100 is used to estimate the sum of the series

�
�

n�1

�
(�

n
1
2
)n

�,

the estimate is an overestimate. Justify your answer.

In Exercises 68 and 69, use the series �
�

n�0

�
n(2

n
x
�

�

2
5)n

�.

68. Multiple Choice Which of the following is the radius of con-
vergence of the series? B

(A) 1 (B) 1�2 (C) 3�2 (D) 2 (E) 5�2

69. Multiple Choice Which of the following is the interval of
convergence of the series? A

(A) 2 
 x 
 3 (B) 4 
 x 
 6 (C) ��
1
2

� 
 x 
 �
1
2

�

(D) �3 
 x 
 �2 (E) �6 
 x 
 �4

70. Multiple Choice Which of the following series converge? E

I. �
�

n�1

�
�
4
n	

� II. �
�

n�1

�
(ln

1
4)n� III. �

�

n�1

�
(�

n
1
2
)n

�

(A) I only (B) II only (C) III only

(D) I & II only (E) II & III only

55. ��
3
e

� � 2 
 x 
 �
3
e

� � 2, or about �3.104 
 x 
 �0.896 56. �5e 
 x 
 5e, or about �13.591 
 x 
 13.591

Convergent for �1/2 � x 
 1/2.
Use the Ratio Test, Direct 
Comparison Test, and Alternating
Series Test.

True. The term 

a101 � �
(
(
�

10
1
1
)1

)

0

2

1
� is negative.

59. (a) Diverges

(b) S � 

�

n�1

�
3n3

3n
� n
� � 


�

n�1

�
3n2

3
� 1
� which converges.

66. True. The endpoints are x ��1. The corresponding series is 

�

n�1

�
(�1

2

)

n

n�1

�

at each endpoint and it converges.
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Quick Quiz for AP* Preparation: Sections 9.4 and 9.5

You may use a graphing calculator to solve the following 
problems.

1. Multiple Choice Which of the following series converge? E

I. �
�

n�0

�
n2

2
� 1
� II. �

�

n�1

�
2
3

n

n

�

�

1
1

� III. �
�

n�1

�
�4

n
n	

�

(A) I only (B) II only (C) III only

(D) II & III only (E) I & II only

2. Multiple Choice Which of the following is the sum of the 
telescoping series E

�
�

n�1

�
(n � 1)

2
(n � 2)
�?

(A) 1�3 (B) 1�2 (C) 3�5 (D) 2�3 (E) 1

3. Multiple Choice Which of the following describes the
behavior of the series D

�
�

n�1

(�1)n �
ln

n
n

�?

I. converges II. diverges III. converges conditionally

(A) I only (B) II only (C) III only

(D) I & III only (E) II & III only

4. Free Response Consider the power series 

�
�

n�0

�
n(2

n
x
�

�

2
3)n

�.

(a) Find all values of x for which the series converges absolutely.
Justify your answer.

(b) Find all values of x for which the series converges condition-
ally. Justify your answer.

71. Multiple Choice Which of the following gives the truncation
error if S100 is used to approximate the sum of the series C

�
�

n�1

�
(�

n
1
2
)n

�?

(A) 0.0098 (B) 0.00098 (C) 0.000098

(D) 0.0000098 (E) 0.00000098

Exploration
72. Group Activity Within your group, have each student construct

a series that converges to one of the numbers  1, … , n. Then
exchange your series with another group and try to figure out
which number is matched with which series. Answers will vary.

Extending the Ideas
Here is a test called the nth-Root Test.

73. Use the nth-Root Test and the fact that  limn→� �n
n	 � 1  to 

test the following series for convergence or divergence.

(a) �
�

n�1

�
n
2n

2

� Converges

(b) �
�

n�1
(�2n

n
� 1
� )n

Converges

n�2n, n is odd
(c) �

�

n�1

an , where  an � {1�2n, n is even Converges

74. Use the nth-Root Test and whatever else you need to find the
intervals of convergence of the following series.

(a) �
�

n�0

�
�x �

4n

1�n

� (�3, 5)

(b) �
�

n�1

�
�x

n
�

• 3
2
n

�n

� [�1, 5)

(c) �
�

n�1

2nx n (�1/2, 1/2)

(d) �
�

n�0

�ln x�n (1/e, e)

nth-Root Test Let  � an be a series with  an � 0  
for  n � N, and suppose that  limn→� �n

a	n	 � L.
Then,

(a) the series converges if  L 
 1,

(b) the series diverges if  L � 1  or L is infinite,

(c) the test is inconclusive if  L � 1. 
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absolute convergence (p. 506)

alternating harmonic series (p. 517)

alternating series (p. 517)

Alternating Series Estimation 
Theorem (p. 518)

Alternating Series Test (p. 517)

binomial series (p. 494)

Binomial Theorem (p. 494)

center of power series (p. 476)

conditional convergence (p. 518)

convergent sequence (p. 483)

converges absolutely (p. 506)

Convergence Theorem for Power 
Series (p. 504)

convergent series (p. 474)

differentiation of series (p. 477)

Direct Comparison Test (p. 505)

divergent sequence (p. 483)

divergent series (p. 474)

error term (p. 496)

Euler’s formula (p. 499)

Euler’s identities (p. 501)

finite sum (p. 473)

geometric series (p. 475)

harmonic series (p. 514)

hyperbolic sine and cosine (p. 500)

identity (p. 503)

infinite series (p. 475)

Integral Test (p. 513)

integration of series (p. 478)

interval of convergence (p. 475)

Lagrange error bound (p. 496)

Lagrange form of the remainder (p. 496)

Leibniz’s Theorem (p. 517)

Limit Comparison Test (p. 515)

limit of a sequence (p. 483)

Maclaurin series (pp. 487, 491)

nth-Root Test (p. 525)

nth term of a series (p. 474)

nth-Term Test for divergence (p. 504)

partial sum (p. 474)

PARTSUMG (p. 513)

PARTSUMT (p. 513)

power series centered at  x � a (p. 476)

p-series (p. 514)

p-Series Test (p. 514)

quadratic approximation (p. 500)

radius of convergence (p. 504)

Ratio Test (p. 507)

rearrangement of series (p. 518)

Remainder Estimation Theorem (p. 498)

remainder of order n (p. 496)

representing functions by series (p. 476)

sum of a series (p. 473)

Taylor polynomial (p. 485)

Taylor polynomial of order n at 
x � a (p. 484)

Taylor series (p. 487)

Taylor series at x � a (p. 489)

Taylor’s formula (p. 496)

Taylor’s Theorem with Remainder (p. 496)

telescoping series (p. 510)

Term-by-Term Differentiation 
Theorem (p. 478)

Term-by-Term Integration Theorem (p. 479)

terms of a series (p. 474)

truncation error (p. 495)

Chapter 9 Key Terms

The collection of exercises marked in red could be used as a chapter test.

In Exercises 1–16, find (a) the radius of convergence for the series
and (b) its interval of convergence. Then identify the values of x for
which the series converges (c) absolutely and (d) conditionally.

1. �
�

n�0

�
��

n
x
!
�n

� See page 529. 2. �
�

n�1

�
�x

n
�

3
4
n

�n

� See page 529.

3. �
�

n�0
( �

2

3
� )n

�x � 1�n See page 529. 4. �
�

n�1

�
�x
�2

�

n �

1�2

1

n

�

�

!

2

� See page 529.

5. �
�

n�1

�
��1�n�1

n
�3

2
x � 1�n

� 6. �
�

n�0

�n � 1�x3n See page 529.

7. �
�

n�0

�
�n �

�2n
1�

�

�2x
1�

�

2n

1�n

� 8. �
�

n�1

�
n
x n

n� See page 529.

9. �
�

n�1

�
�

xn

n	
� See page 529. 10. �

�

n�1

�
e
n

n

e� xn See page 529.

11. �
�

n�0

�
�n �

3
1�

n

x2n�1

� See page 529.12.�
�

n�0

�
��1�n

2
�
n
x

�

�

1
1�2n�1

�

13. �
�

n�1

�
2
n!

n� x2n See page 529. 14. �
�

n�2

�
�1

ln
0x

n
�n

� See page 529.

15. �
�

n�1

�n � 1�! x n See page 529. 16. �
�

n�1
(�x2

2
� 1
� )

n

See page 529.

In Exercises 17–22, the series is the value of the Maclaurin series of
a function f �x� at a particular point. What function and what point?
What is the sum of the series?

17. 1 � �
1

4
� � �

1

1

6
� � … � ��1�n �

4
1

n� � …

18. �
2

3
� � �

1

4

8
� � �

8

8

1
� � … � ��1�n�1�

n
2
3

n

n� � …

19. p � �
p

3!

3

� � �
p

5!

5

� � … � ��1�n�
�2
p

n

2

�

n�

1

1

�!
� � …

20. 1 � �
9
p

•

2

2!
� � �

81
p

•

4

4!
� � … � ��1�n�

32n

p

�2

2n

n�!
� � …

21. 1 � ln 2 � �
�ln

2
2
!

�2

� � … � �
�ln

n
2
!
�n

� � …

22. �
�

1

3	
� � �

9�
1

3	
� � �

45�
1

3	
� � …

� ��1�n�1�
�2n � 1��

1

�3	�2n�1
�� …

Chapter 9 Review Exercises

See page 529.

See page 529.

See page 529.

f(x) � 1/(1�x) evaluated at x �1/4; Sum � 4/5.

f(x) � ln (1 � x) evaluated at x �2/3; Sum � ln (5/3).

f(x) � sin x evaluated at x � � ; Sum � 0.

f(x) � cos x evaluated at x � ��3; Sum � 1/2.

f(x) � ex evaluated at x � ln 2; Sum � 2.

f(x) � tan�1 x evaluated at x � 1/�3	; Sum � ��6 .
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In Exercises 23–36, find a Maclaurin series for the function.

23. �
1 �

1
6x

� 24. �
1 �

1
x3�

25. x9 � 2x2 � 1 26. �
1

4
�

x
x

�

27. sin px 28. �sin �
2
3
x
�

29. �x � sin x 30. �
ex �

2
e�x

�

31. cos �5	x	 32. e�p x�2�

33. xe�x2 34. tan�1 3x

35. ln �1 � 2x� 36. x ln �1 � x�

In Exercises 37–40, find the first four nonzero terms and the general
term of the Taylor series generated by f at  x � a.

37. f �x� � �
3 �

1

x
� , a � 2

38. f �x� � x3 � 2x2 � 5, a � �1

39. f �x� � �
1

x
� , a � 3

40. f �x� � sin x, a � p

In Exercises 41–52, determine if the series converges absolutely,
converges conditionally, or diverges. Give reasons for your answer.

41. �
�

n�1

�
�

n
5
� 42. �

�

n�1

�
��
�

1

n	

�n

�

43. �
�

n�1

�
ln
n3

n
� 44. �

�

n�1

�
n

n
�

!
1

�

45. �
�

n�1

�
ln

�
�
�

n
1
�

�n

1�
� 46. �

�

n�2

�
n�ln

1
n�2�

47. �
�

n�1

�
��

n
3
!
�n

� 48. �
�

n�1

�
2
n

n3
n

n

�

49. �
�

n�1

�
��
2n

1
2
�n

�

�n
n

2 �

�

1
1
�

� Diverges. nth-Term Test for Divergence

50. �
�

n�1

51. �
�

n�2

�
n�n	

1
2	�	 1	
�

52. �
�

n�1
(�n �

n
1

� )n

Diverges. nth-Term Test for Divergence

In Exercises 53 and 54, find the sum of the series.

53. �
�

n�3

�
�2n � 3�

1
�2n � 1�
� 1/6

54. �
�

n�2

�
n�n

�

�

2
1�

� �1

1
���
�n	�n	 �	 1	��	n	 �	 2	�	

55. Let f be a function that has derivatives of all orders for all real
numbers. Assume that f �3� � 1, f 
�3� � 4, f ��3� � 6, and 
f ��3� � 12.

(a) Write the third order Taylor polynomial for f at  x � 3 and
use it to approximate f �3.2�.
(b) Write the second order Taylor polynomial for f 
at x � 3
and use it to approximate f 
�2.7�.
(c) Does the linearization of f underestimate or overestimate the
values of f �x� near  x � 3?  Justify your answer.

56. Let 

P4�x� � 7 � 3�x � 4� � 5�x � 4�2 � 2�x � 4�3 � 6�x � 4�4

be the Taylor polynomial of order 4 for the function f at x � 4.
Assume f has derivatives of all orders for all real numbers.

(a) Find f �4� and f ��4�.
(b) Write the second order Taylor polynomial for f 
at  x � 4
and use it to approximate f 
�4.3).

(c) Write the fourth order Taylor polynomial for 
g�x� � �x

4 f �t� dt at  x � 4.

(d) Can the exact value of f �3� be determined from the
information given? Justify your answer.

57. (a) Write the first three nonzero terms and the general term of the
Taylor series generated by f �x� � 5 sin �x�2� at x � 0.

(b) What is the interval of convergence for the series found in
(a)? Show your method.

(c) Writing to Learn What is the minimum number of terms
of the series in (a) needed to approximate f �x� on the interval
��2, 2� with an error not exceeding 0.1 in magnitude? Show
your method.

58. Let f �x� � 1��1 � 2x�.
(a) Write the first four terms and the general term of the Taylor
series generated by f �x� at x � 0. 

(b) What is the interval of convergence for the series found in
part (a)? Show your method.

(c) Find f ��1�4�.  How many terms of the series are adequate
for approximating f ��1�4� with an error not exceeding one
percent in magnitude? Justify your answer.

59. Let f �x� � �
�

n�1

�
x

n

nn
!

n

�

for all x for which the series converges.

(a) Find the radius of convergence of this series.

(b) Use the first three terms of this series to approximate
f ��1�3�.
(c) Estimate the error involved in the approximation in 
part (b). Justify your answer.

60. Let f �x� � 1��x � 2�.
(a) Write the first four terms and the general term of the Taylor
series generated by f �x� at x � 3.

(b) Use the result from part (a) to find the first four terms and
the general term of the series generated by  ln �x � 2 � at x � 3. 

(c) Use the series in part (b) to compute a number that differs
from  ln �3�2� by less than 0.05. Justify your answer.

1 � 6x � 36x2 � … � (6x)n � …

1 � 2x2 � x9

1 � x3 � x6 � … � (�1)nx3n � …

4x � 4x2 � 4x3 � … � 4xn�1 �…

Diverges. It is �5 times
the harmonic series. 

Converges conditionally.
Alternating Series Test
and p � 1/2.

Converges absolutely.
nth-Root Test or Ratio
Test.

Converges absolutely. 
Direct Comparison Test
with 1/n2.

Converges absolutely. Direct Comparison
Test with 1/n3/2.

Converges absolutely. Limit Comparison
Test with 1/n2.

Converges absolutely.
Ratio Test

Converges absolutely.
Ratio Test

Converges absolutely.
Integral Test

45. Converges conditionally. Alternating Series Test and Direct Comparison 
Test with 1/n.
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61. Let f �x� � e�2x2
.

(a) Find the first four nonzero terms and the general term for the
power series generated by f �x� at x � 0.

(b) Find the interval of convergence of the series generated by
f �x� at x � 0. Show the analysis that leads to your conclusion.

(c) Writing to Learn Let g be the function defined by the
sum of the first four nonzero terms of the series generated by
f �x�. Show that � f �x� � g�x�� 
 0.02 for �0.6 � x � 0.6.

62. (a) Find the Maclaurin series generated by f �x� � x2��1 � x�.
(b) Does the series converge at  x � 1? Explain.

63. Evaluating Nonelementary Integrals Maclaurin series can
be used to express nonelementary integrals in terms of series. 

(a) Express �x
0 sin t2 dt as a power series.

(b) According to the Alternating Series Estimation Theorem,
how many terms of the series in part (a) should you use to
estimate  �1

0
sin x2 dx with an error of less than 0.001?

(c) Use NINT to approximate  �1
0

sin x2 dx.

(d) How close to the answer in part (c) do you get if you use
four terms of the series in part (a)?

64. Estimating an Integral Suppose you want a quick
noncalculator estimate for the value of �1

0
x2ex dx. There are

several ways to get one.

(a) Use the Trapezoidal rule with n � 2 to estimate �1
0

x2ex dx.

(b) Write the first three nonzero terms of the Maclaurin series
for x2ex to obtain the fourth order Maclaurin polynomial P4�x�
for x2ex. Use �1

0
P4�x� dx to obtain another estimate of �1

0
x2ex dx.

(c) Writing to Learn The second derivative of f �x� � x2ex is
positive for all x � 0. Explain why this enables you to conclude
that the Trapezoidal rule estimate obtained in part (a) is too large.

(d) Writing to Learn All the derivatives of f �x� � x2ex are
positive for x � 0. Explain why this enables you to conclude that
all Maclaurin series approximations to f �x� for x in �0, 1
 will be
too small. (Hint: f �x� � Pn�x� � Rn�x�.)
(e) Use integration by parts to evaluate �1

0
x2ex dx.

65. Perpetuities Suppose you want to give a favorite school or
charity $1000 a year forever. This kind of gift is called a
perpetuity. Assume you can earn 8% annually on your money, i.e.,
that a payment of an today will be worth an �1.08�n in n years. 

(a) Show that the amount you must invest today to cover the nth
$1000 payment in n years is 1000(1.08)�n.

(b) Construct an infinite series that gives the amount you must
invest today to cover all the payments in the perpetuity.

(c) Show that the series in part (b) converges and find its sum.
This sum is called the present value of the perpetuity. What does
it represent? 

66. (Continuation of Exercise 65) Find the present value of a
$1000-per-year perpetuity at 6% annual interest. 

67. Expected Payoff How much would you expect to win
playing the following game?

Toss a fair coin (heads and tails equally likely). Every time it
comes up heads you win a dollar, but the game is over as soon
as it comes up tails.

(a) The expected payoff of the game is computed by summing all
possible payoffs times their respective probabilities. If the
probability of tossing the first tail on the nth toss is  �1�2�n,
express the expected payoff of this game as an infinite series.

(b) Differentiate both sides of

�
1 �

1
x

� � 1 � x � x2 � … � x n � …

to get a series for  1��1 � x�2.

(c) Use the series in part (b) to get a series for  x2��1 � x�2.

(d) Use the series in part (c) to evaluate the expected payoff of
the game.

68. Punching out Triangles This exercise refers to the “right
side up” equilateral triangle with sides of length 2b in the
accompanying figure. 

“Upside down” equilateral triangles are removed from the
original triangle as the sequence of pictures suggests. The sum
of the areas removed from the original triangle forms an infinite
series.

(a) Find this infinite series.

(b) Find the sum of this infinite series and hence find the total
area removed from the original triangle.

(c) Is every point on the original triangle removed? Explain why
or why not.

69. Nicole Oresme’s (pronounced “O-rem’s”) Theorem
Prove Nicole Oresme’s Theorem that

1 � �
1
2

� • 2 � �
1
4

� • 3 � … � �
2n

n
�1� � … � 4.

(Hint: Differentiate both sides of the equation 
1��1 � x� � 1 � ��

n�1 x n.�

70. (a) Show that

�
�

n�1

�
n�n

x
�
n

1�
� � �

�x
2
�

x2

1�3�

for  � x � � 1  by differentiating the identity

�
�

n�1

x n�1 � �
1

x
�

2

x
�

twice, multiplying the result by x, and then replacing x by 1�x.

2b

2b 2b

2b

2b 2b

2b

2b 2b • • •

$16,666.67 [Again, assuming first payment at end of year.]
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Calculus at Work
I attended the University of California at

Los Angeles and received my B.S., M.S.,

and Ph.D. degrees in Geophysics and

Space Physics. After graduating, I became

a Research Physicist at SRI International

in Menlo Park, California. There I studied

the ionosphere, particularly from high 

latitudes, for the Sondre Stromfjord 

Incoherent Scatter Radar project.

I am currently an Associate Research 

Scientist at the University of Michigan,

where I continue my upper atmospheric

research. I study the lower thermosphere,

which extends from 85 to 150 km above

the earth. At this height, many physical

processes interact in complex ways, 

making it difficult to understand the 

behavior of winds and temperatures 

and to observe atmospheric parameters.

Atmospheric models are therefore vitally

important in constructing a global 

perspective of lower thermospheric 

dynamics. The models use calculus in a

number of ways. Polynomial expansions

are used to express variables globally. 

Integrals are solved by summation over

small steps in independent variables to

determine the global wind and tempera-

ture fields. And complex processes, such

as turbulence, are described by equations

of motion and state. These equations are

solved differentially, using series approxi-

mations where necessary.

Roberta M. Johnson
University of Michigan

Ann Arbor, MI

AP* Examination Preparation
You may use a graphing calculator to solve the following 
problems.

71. Let f (x) � �
x �

1
1

�.

(a) Find the first three terms and the general term for the Taylor
series for f at x � 1.

(b) Find the interval of convergence for the series in part (a). 
Justify your answer.

(c) Find the third-order Taylor polynomial for f at x � 1, and use
it to approximate f (0.5).

72. Let f (x) � �
�

n�0

�
n
2
x
n

n

�.

(a) Find the interval of convergence of the series. Justify your
answer.

(b) Show that the first nine terms of the series are sufficient to
approximate f (�1) with an error less than 0.01.

73. Let f be a function that has derivatives of all orders for all real
numbers. Assume that f (0) � �1, f �(0) � 2, f �(0) � �3, and
f ��(0) � 4.

(a) Write the linearization for f at x � 0.

(b) Write the quadratic approximation for f at x � 0.

(c) Write the third degree Taylor approximation P3(x) for f
at x � 0.

(d) Use P3(x) to approximate f (0.7).

(b) Use part (a) to find the real solution greater than 1 
of the equation

x � �
�

n�1

�
n�n

x
�
n

1�
� .

Answers to Review Exercises
1. (a) � (b) All real numbers (c) All real numbers (d) None
2. (a) 3 (b) [�7, �1] (c) (�7, �1) (d) At x��7

3. (a) �
3
2

� (b) (�1/2, 5/2) (c) (�1/2, 5/2) (d) None

4. (a) � (b) All real numbers (c) All real numbers (d) None
5. (a) 1/3 (b) [0, 2/3] (c) [0, 2/3] (d) None
6. (a) 1 (b) (�1, 1) (c) (�1, 1) (d) None
7. (a) 1 (b) (�3/2, 1/2) (c) (�3/2 1/2) (d) None
8. (a) � (b) All real numbers (c) All real numbers (d) None
9. (a) 1 (b) [�1, 1) (c) (�1, 1) (d) At x��1
10. (a) 1/e (b) [�1/e, 1/e] (c) [�1/e, 1/e] (d) None

11. (a) �3� (b) (��3� , �3� ) (c) (��3� , �3� ) (d) None

12. (a) 1 (b) [0, 2] (c) (0, 2) (d) At x � 0 and x � 2
13. (a) 0 (b) x � 0 only (c) x � 0 (d) None
14. (a) 1/10 (b) [�1/10, 1/10) (c) (�1/10, 1/10) (d) At x � �1/10
15. (a) 0 (b) x � 0 only (c) x�0 (d) None

16. (a) �3� (b) (��3�, �3�) (c) (��3�, �3�) (d) None

70. (b) Solve x � �
(x

2
�

x2

1)3�. x � 2.769.
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