
AP Calculus AB Mid-Term Review Problem Set

1.

What is the x-coordinate of the point of inflection on the graph of $y = \frac{1}{3}x^3 + 5x^2 + 24$?

- (A) 5
- (B) 0
- (C) $-\frac{10}{3}$ (D) -5 (E) -10

2.

The graph of a piecewise-linear function f, for $-1 \le x \le 4$, is shown above. What is the value of $\int_{-1}^{4} f(x) dx?$

- (A) 1
- (B) 2.5
- (C) 4
- (D) 5.5
- (E) 8

3.

$$\int_{1}^{2} \frac{1}{x^2} dx =$$

- (A) $-\frac{1}{2}$ (B) $\frac{7}{24}$ (C) $\frac{1}{2}$ (D) 1

- (E) $2 \ln 2$

If f is continuous for $a \le x \le b$ and differentiable for a < x < b, which of the following could be

- (A) $f'(c) = \frac{f(b) f(a)}{b a}$ for some c such that a < c < b.
- f'(c) = 0 for some c such that a < c < b.
- f has a minimum value on $a \le x \le b$.
- f has a maximum value on $a \le x \le b$.
- (E) $\int_a^b f(x)dx$ exists.

5.

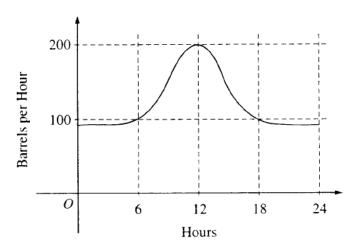
$$\int_0^x \sin t \, dt =$$

- (A) $\sin x$
- (B) $-\cos x$
- (C) $\cos x$
- (D) $\cos x 1$
- (E) $1-\cos x$

6.

If $x^2 + xy = 10$, then when x = 2, $\frac{dy}{dx} =$

- (A) $-\frac{7}{2}$ (B) -2 (C) $\frac{2}{7}$ (D) $\frac{3}{2}$ (E) $\frac{7}{2}$


Let f and g be differentiable functions with the following properties:

- (i) g(x) > 0 for all x
- (ii) f(0) = 1

If h(x) = f(x)g(x) and h'(x) = f(x)g'(x), then f(x) =

- (A) f'(x)
- (B) g(x)
- (C) e^x
- (D) 0
- (E) 1

8.

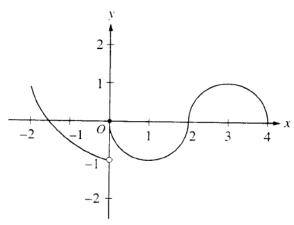
The flow of oil, in barrels per hour, through a pipeline on July 9 is given by the graph shown above. Of the following, which best approximates the total number of barrels of oil that passed through the pipeline that day?

- (A) 500
- (B) 600
- (C) 2,400
- (D) 3,000
- (E) 4,800

What is the instantaneous rate of change at x = 2 of the function f given by $f(x) = \frac{x^2 - 2}{x - 1}$?

- (A) -2 (B) $\frac{1}{6}$ (C) $\frac{1}{2}$ (D) 2 (E) 6

10.


If f is a linear function and 0 < a < b, then $\int_a^b f''(x) dx =$

- (A) 0 (B) 1 (C) $\frac{ab}{2}$ (D) b-a (E) $\frac{b^2-a^2}{2}$

11.

If $f(x) = \begin{cases} \ln x & \text{for } 0 < x \le 2 \\ x^2 \ln 2 & \text{for } 2 < x \le 4, \end{cases}$ then $\lim_{x \to 2} f(x)$ is

- (A) ln 2
- (B) ln 8
- (C) ln 16
- (D) 4 (E) nonexistent

The graph of the function f shown in the figure above has a vertical tangent at the point (2,0) and horizontal tangents at the points (1,-1) and (3,1). For what values of x, -2 < x < 4, is f not differentiable?

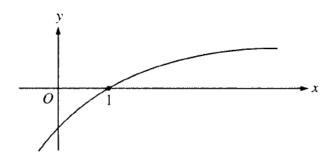
- (A) 0 only (B) 0 and 2 only (C) 1 and 3 only (D) 0, 1, and 3 only
 - (E) 0, 1, 2, and 3

13.

A particle moves along the x-axis so that its position at time t is given by $x(t) = t^2 - 6t + 5$. For what value of *t* is the velocity of the particle zero?

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5

14.


If $F(x) = \int_0^x \sqrt{t^3 + 1} \ dt$, then F'(2) =

- (A) -3
- (C) 2
- (D) 3
- (E) 18

If $f(x) = \sin(e^{-x})$, then f'(x) =

- (A) $-\cos(e^{-x})$
- (B) $\cos(e^{-x}) + e^{-x}$
- (C) $\cos(e^{-x}) e^{-x}$
- (D) $e^{-x}\cos(e^{-x})$
- (E) $-e^{-x}\cos(e^{-x})$

16.

The graph of a twice-differentiable function f is shown in the figure above. Which of the following is true?

- (A) f(1) < f'(1) < f''(1)
- (B) f(1) < f''(1) < f'(1)
- (C) f'(1) < f(1) < f''(1)
- (D) f''(1) < f(1) < f'(1)
- (E) f''(1) < f'(1) < f(1)

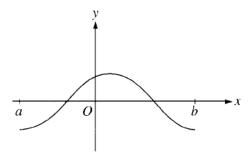
An equation of the line tangent to the graph of $y = x + \cos x$ at the point (0,1) is

- $(A) \quad y = 2x + 1$
- (B) y = x + 1 (C) y = x
- (D) y = x 1
- (E) y = 0

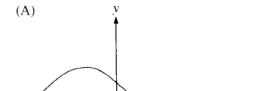
18.

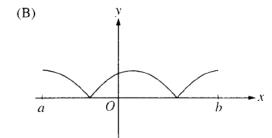
If $f''(x) = x(x+1)(x-2)^2$, then the graph of f has inflection points when x =

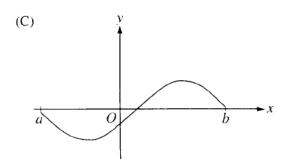
- (A) -1 only (B) 2 only (C) -1 and 0 only (D) -1 and 2 only (E) -1, 0, and 2 only

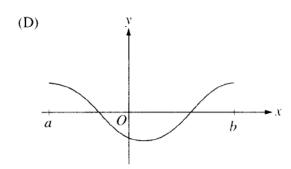

19.

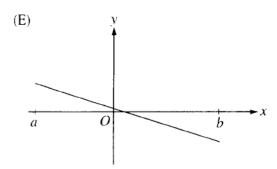
What are all values of k for which $\int_{-3}^{k} x^2 dx = 0$?


- (A) -3
- (B) 0
- (C) 3
- (D) -3 and 3 (E) -3, 0, and 3


The function f is given by $f(x) = x^4 + x^2 - 2$. On which of the following intervals is f increasing?


- (A) $\left(-\frac{1}{\sqrt{2}}, \infty\right)$
- (B) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
- (C) $(0,\infty)$
- (D) $\left(-\infty,0\right)$
- (E) $\left(-\infty, -\frac{1}{\sqrt{2}}\right)$




The graph of f is shown in the figure above. Which of the following could be the graph of the derivative of f?

The maximum acceleration attained on the interval $0 \le t \le 3$ by the particle whose velocity is given by $v(t) = t^3 - 3t^2 + 12t + 4$ is

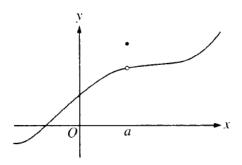
- (A) 9
- (B) 12
- (C) 14
- (D) 21
- (E) 40

23.

x	0	1	2
f(x)	1	k	2

The function f is continuous on the closed interval [0,2] and has values that are given in the table above. The equation $f(x) = \frac{1}{2}$ must have at least two solutions in the interval [0,2] if k =

- (A) 0
- (B) $\frac{1}{2}$ (C) 1
- (E) 3


24.

If $f(x) = \tan(2x)$, then $f'\left(\frac{\pi}{6}\right) =$

- (A) $\sqrt{3}$ (B) $2\sqrt{3}$ (C) 4 (D) $4\sqrt{3}$
- (E) 8

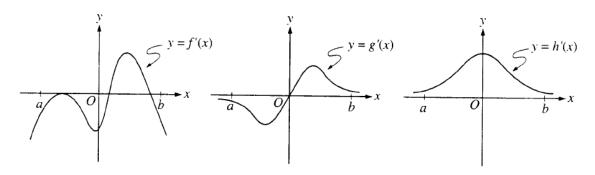
Calculator

25.

The graph of a function f is shown above. Which of the following statements about f is false?

- (A) f is continuous at x = a.
- (B) f has a relative maximum at x = a.
- (C) x = a is in the domain of f.
- (D) $\lim_{x \to a^+} f(x)$ is equal to $\lim_{x \to a^-} f(x)$.
- (E) $\lim_{x \to a} f(x)$ exists.

26.


Let f be the function given by $f(x) = 3e^{2x}$ and let g be the function given by $g(x) = 6x^3$. At what value of x do the graphs of f and g have parallel tangent lines?

- (A) -0.701
- (B) -0.567
- (C) -0.391
- (D) -0.302
- (E) -0.258

The radius of a circle is decreasing at a constant rate of 0.1 centimeter per second. In terms of the circumference C, what is the rate of change of the area of the circle, in square centimeters per second?

- (A) $-(0.2)\pi C$
- -(0.1)C
- (C)
- $(0.1)^2 C$ (D)
- $(0.1)^2 \pi C$ (E)

28.

The graphs of the derivatives of the functions f, g, and h are shown above. Which of the functions f, g, or h have a relative maximum on the open interval a < x < b?

- (A) f only
- (B) *g* only (C) *h* only
- (D) f and g only
- (E) f, g, and h

The first derivative of the function f is given by $f'(x) = \frac{\cos^2 x}{x} - \frac{1}{5}$. How many critical values does f have on the open interval (0,10)?

- (A) One
- (B) Three
- (C) Four
- (D) Five
- (E) Seven

30.

Let f be the function given by f(x) = |x|. Which of the following statements about f are true?

- I. f is continuous at x = 0.
- II. f is differentiable at x = 0.
- III. f has an absolute minimum at x = 0.
- (A) I only (B) II only (C) III only (D) I and III only (E) II and III only

31.

If f is a continuous function and if F'(x) = f(x) for all real numbers x, then $\int_{1}^{3} f(2x) dx =$

- (A) 2F(3)-2F(1)
- (B) $\frac{1}{2}F(3) \frac{1}{2}F(1)$
- (C) 2F(6)-2F(2)
- (D) F(6) F(2)
- (E) $\frac{1}{2}F(6) \frac{1}{2}F(2)$

If $a \neq 0$, then $\lim_{x \to a} \frac{x^2 - a^2}{x^4 - a^4}$ is

- (A) $\frac{1}{a^2}$ (B) $\frac{1}{2a^2}$ (C) $\frac{1}{6a^2}$ (D) 0 (E) nonexistent

33.

Which of the following is an equation of the line tangent to the graph of $f(x) = x^4 + 2x^2$ at the point where f'(x) = 1?

- (A) y = 8x 5
- (B) y = x + 7
- (C) y = x + 0.763
- (D) y = x 0.122
- (E) y = x 2.146

34.

Let F(x) be an antiderivative of $\frac{(\ln x)^3}{x}$. If F(1) = 0, then F(9) =

- (A) 0.048
- (B) 0.144
- (C) 5.827
- (D) 23.308
- (E) 1,640.250

If g is a differentiable function such that g(x) < 0 for all real numbers x and if $f'(x) = (x^2 - 4)g(x)$, which of the following is true?

- (A) f has a relative maximum at x = -2 and a relative minimum at x = 2.
- (B) f has a relative minimum at x = -2 and a relative maximum at x = 2.
- (C) f has relative minima at x = -2 and at x = 2.
- (D) f has relative maxima at x = -2 and at x = 2.
- (E) It cannot be determined if f has any relative extrema.

36.

If the base b of a triangle is increasing at a rate of 3 inches per minute while its height h is decreasing at a rate of 3 inches per minute, which of the following must be true about the area A of the triangle?

- (A) A is always increasing.
- (B) A is always decreasing.
- (C) A is decreasing only when b < h.
- (D) A is decreasing only when b > h.
- (E) A remains constant.

Let f be a function that is differentiable on the open interval (1,10). If f(2) = -5, f(5) = 5, and f(9) = -5, which of the following must be true?

- I. f has at least 2 zeros.
- II. The graph of f has at least one horizontal tangent.
- III. For some c, 2 < c < 5, f(c) = 3.
- (A) None
- (B) I only
- (C) I and II only
- (D) I and III only
- (E) I, II, and III

38.

If $0 \le k < \frac{\pi}{2}$ and the area under the curve $y = \cos x$ from x = k to $x = \frac{\pi}{2}$ is 0.1, then $k = \frac{\pi}{2}$

- (A) 1.471
- (B) 1.414
- (C) 1.277
- (D) 1.120
- (E) 0.436