1980 AB1

Let R be the region enclosed by the graphs of $y=x^{3}$ and $y=\sqrt{x}$.
(a) Find the area of R.
(b) Find the volume of the solid generated by revolving R about the x-axis.

1981 AB2

Let R be the region in the first quadrant enclosed by the graphs of $y=4-x^{2}, y=3 x$, and the y-axis.
(a) Find the area of region R.
(b) Find the volume of the solid formed by revolving the region R about the x-axis.

1985 AB3

Let R be the region enclosed by the graphs of $y=e^{-x}, y=e^{x}$, and $x=\ln 4$.
(a) Find the area of R by setting up and evaluating a definite integral.
(b) Set up, but do not integrate, an integral expression in terms of a single variable for the volume generated when the region R is revolved about the x-axis.
(c) Set up, but do not integrate, an integral expression in terms of a single variable for the volume generated when the region R is revolved about the v-axis.

1987 AB3

Let R be the region enclosed by the graphs of $y=(64 x)^{\frac{1}{4}}$ and $y=x$.
(a) Find the volume of the solid generated when region R is revolved about the x-axis.
(b) Set up, but do not integrate, an integral expression in terms of a single variable for the volume of the solid generated when region R is revolved about the y-axis.

1988 AB3

Let R be the region in the first quadrant enclosed by the hyperbola $x^{2}-y^{2}=9$, the x-axis, and the line $x=5$.
(a) Find the volume of the solid generated by revolving R about the x-axis.
(b) Set up, but do not integrate, an integral expression in terms of a single variable for the volume of the solid generated when R is revolved about the line $x=-1$.

