AP Calc BC Problem Set #3

Let p and q be real numbers and let f be the function defined by:

$$f(x) = \begin{cases} 1 + 2p(x-1) + (x-1)^2, & \text{for } x \le 1 \\ qx + p, & \text{for } x > 1. \end{cases}$$

- (a) Find the value of q, in terms of p, for which f is continuous at x = 1.
- (b) Find the values of p and q for which f is differentiable at x = 1.
- (c) If p and q have the values determined in part (b), is f'' a continuous function? Justify your answer.

Let f be the function defined by $f(x) = x^4 - 3x^2 + 2$.

- (a) Find the zeros of f.
- (b) Write an equation of the line tangent to the graph of f at the point where x = 1.
- (c) Find the x-coordinate of each point at which the line tangent to the graph of f is parallel to the line y = -2x + 4.

Let f be the real-valued function defined by $f(x) = \sin^3 x + \sin^3 |x|$.

- (a) Find f'(x) for x > 0.
- (b) Find f'(x) for x < 0.
- (c) Determine whether f(x) is continuous at x = 0. Justify your answer.
- (d) Determine whether the derivative of f(x) exists at x = 0. Justify your answer.

Let f be the real-valued function defined by $f(x) = \sqrt{1+6x}$.

- (a) Give the domain and range of f.
- (b) Determine the slope of the line tangent to the graph of f at x = 4.
- (c) Determine the y-intercept of the line tangent to the graph of f at x = 4.
- (d) Give the coordinates of the point on the graph of f where the tangent line is parallel to y = x + 12.

Let f be the function defined by $f(x) = \frac{2x-5}{x^2-4}$.

- (a) Find the domain of f.
- (b) Write an equation for each vertical and each horizontal asymptote for the graph of f.
- (c) Find f'(x).
- (d) Write an equation for the line tangent to the graph of f at the point (0, f(0)).

Let $f(x) = \sqrt{1 - \sin x}$.

- (a) What is the domain of f?
- (b) Find f'(x).
- (c) What is the domain of f'?
- (d) Write an equation for the line tangent to the graph of f at x = 0.

Let f be the function given by $f(x) = \sqrt{x^4 - 16x^2}$.

- (a) Find the domain of f.
- (b) Describe the symmetry, if any, of the graph of f.
- (c) Find f'(x).
- (d) Find the slope of the line <u>normal</u> to the graph of f at x = 5.

A particle moves along the x-axis in such a way that its position at time t for $t \ge 0$ is given by $x = \frac{1}{3}t^3 - 3t^2 + 8t$.

- (a) Show that at time t = 0, the particle is moving to the right.
- (b) Find all values of t for which the particle is moving to the left.
- (c) What is the position of the particle at time t = 3?
- (d) When t = 3, what is the total distance the particle has traveled?

A particle starts at time t = 0 and moves on a number line so that its position at time t is given by $x(t) = (t-2)^3(t-6)$.

- (a) When is the particle moving to the right?
- (b) When is the particle at rest?
- (c) When does the particle change direction?
- (d) What is the farthest to the left of the origin that the particle moves?

A particle moves along a line so that at any time t its position is given by $x(t) = 2\pi t + \cos 2\pi t$.

- (a) Find the velocity at time t.
- (b) Find the acceleration at time t.
- (c) What are all values of t, $0 \le t \le 3$, for which the particle is at rest?
- (d) What is the maximum velocity?

Given the curve $x + xy + 2y^2 = 6$.

- (a) Find an expression for the slope of the curve at any point (x, y) on the curve.
- (b) Write an equation for the line tangent to the curve at the point (2,1).
- (c) Find the coordinates of all other points on this curve with slope equal to the slope at (2,1).

Let y = f(x) be the continuous function that satisfies the equation $x^4 - 5x^2y^2 + 4y^4 = 0$ and whose graph contains the points (2,1) and (-2,-2). Let ℓ be the line tangent to the graph of f at x = 2.

- (a) Find an expression for y'.
- (b) Write an equation for line ℓ .
- (c) Give the coordinates of a point that is on the graph of f but is not on line ℓ .
- (d) Give the coordinates of a point that is on line ℓ but is not on the graph of f.

Consider the curve given by the equation $y^3 + 3x^2y + 13 = 0$.

- (a) Find $\frac{dy}{dx}$.
- (b) Write an equation for the line tangent to the curve at the point (2,-1).
- (c) Find the minimum y-coordinate of any point on the curve. Justify your answer.

Given the curve $x^2 - xy + y^2 = 9$.

- (a) Write a general expression for the slope of the curve.
- (b) Find the coordinates of the points on the curve where the tangents are vertical.
- (c) At the point (0,3) find the rate of change in the slope of the curve with respect to x.