Derivatives by the Limit Process III, Larson 7.0 Section 2.1 #61-88

In Exercises 61-70, use the alternative form of the derivative to find the derivative at x = c (if it exists).

61.
$$f(x) = x^2 - 1$$
, $c = 2$

62.
$$g(x) = x(x-1), c = 1$$

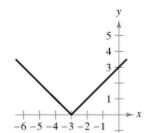
63.
$$f(x) = x^3 + 2x^2 + 1$$
, $c = -2$ **64.** $f(x) = x^3 + 2x$, $c = 1$

64.
$$f(x) = x^3 + 2x$$
, $c = 1$

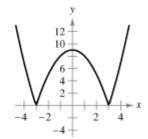
65.
$$g(x) = \sqrt{|x|}, c = 0$$
 66. $f(x) = 1/x, c = 3$

66.
$$f(x) = 1/x$$
. $c = 3$

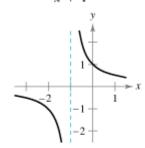
67.
$$f(x) = (x - 6)^{2/3}$$
, $c = 6$

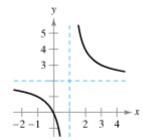

67.
$$f(x) = (x-6)^{2/3}$$
, $c=6$ **68.** $g(x) = (x+3)^{1/3}$, $c=-3$

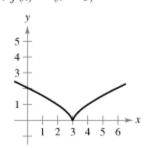
69.
$$h(x) = |x + 5|$$
, $c = -5$ **70.** $f(x) = |x - 4|$, $c = 4$

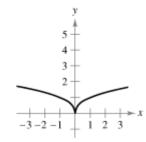

70.
$$f(x) = |x - 4|, c = 4$$

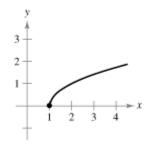
In Exercises 71–80, describe the x-values at which f is differentiable.

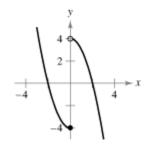

71.
$$f(x) = |x + 3|$$

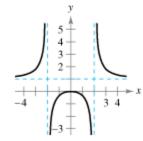

72.
$$f(x) = |x^2 - 9|$$

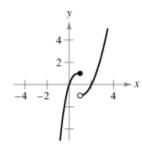

73.
$$f(x) = \frac{1}{x+1}$$


74.
$$f(x) = \frac{2x}{x-1}$$


75.
$$f(x) = (x - 3)^{2/3}$$


76.
$$f(x) = x^{2/5}$$


77.
$$f(x) = \sqrt{x-1}$$


79.
$$f(x) = \begin{cases} 4 - x^2, & x > 0 \\ x^2 - 4, & x \le 0 \end{cases}$$

78.
$$f(x) = \frac{x^2}{x^2 - 4}$$

80.
$$f(x) = \begin{cases} x^2 - 2x, & x > 1 \\ x^3 - 3x^2 + 3x, & x \le 1 \end{cases}$$

In Exercises 81–84, find the derivatives from the left and from the right at x = 1(if they exist). Is the function differentiable at x = 1?

81.
$$f(x) = |x - 1|$$

82.
$$f(x) = \sqrt{1 - x^2}$$

83.
$$f(x) = \begin{cases} (x-1)^3, & x \le 1 \\ (x-1)^2, & x > 1 \end{cases}$$
 84. $f(x) = \begin{cases} x, & x \le 1 \\ x^2, & x > 1 \end{cases}$

84.
$$f(x) = \begin{cases} x, & x \le 1 \\ x^2, & x > 1 \end{cases}$$

In Exercises 85 and 86, determine whether the function is differentiable at x = 2.

85.
$$f(x) = \begin{cases} x^2 + 1, & x \le 2\\ 4x - 3, & x > 2 \end{cases}$$

86.
$$f(x) = \begin{cases} \frac{1}{2}x + 1, & x < 2\\ \sqrt{2x}, & x \ge 2 \end{cases}$$

- 87. Graphical Reasoning A line with slope m passes through the point (0, 4) and has the equation y = mx + 4.
 - (a) Write the distance d between the line and the point (3, 1) as a function of m.
 - (b) Use a graphing utility to graph the function d in part (a). Based on the graph, is the function differentiable at every value of m? If not, where is it not differentiable?
- **88.** Conjecture Consider the functions $f(x) = x^2$ and $g(x) = x^3$.
 - (a) Graph f and f' on the same set of axes.
 - (b) Graph g and g' on the same set of axes.
 - (c) Identify any pattern between the functions f and g and their respective derivatives. Use the pattern to make a conjecture about h'(x) if $h(x) = x^n$, where n is an integer and $n \ge 2$.
 - (d) Find f'(x) if $f(x) = x^4$. Compare the result with the conjecture in part (c). Is this a proof of your conjecture? Explain.