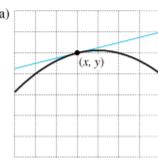
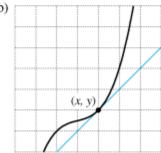
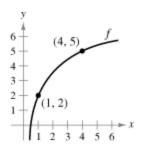

In Exercises 1 and 2, estimate the slope of the graph at the point (x, y).


1. (a)


(b)

2. (a)



(b)

In Exercises 3 and 4, use the graph shown in the figure. To print an enlarged copy of the graph, select the MathGraph button.

MathGraph

3. Identify or sketch each of the quantities on the figure.

(a)
$$f(1)$$
 and $f(4)$

(b)
$$f(4) - f(1)$$

(c)
$$y = \frac{f(4) - f(1)}{4 - 1}(x - 1) + f(1)$$

4. Insert the proper inequality symbol (< or >) between the given quantities.

(a)
$$\frac{f(4) - f(1)}{4 - 1} = \frac{f(4) - f(3)}{4 - 3}$$

(b)
$$\frac{f(4) - f(1)}{4 - 1}$$
 $f'(1)$

In Exercises 5-10, find the slope of the tangent line to the graph of the function at the specified point.

5.
$$f(x) = 3 - 2x$$
, $(-1, 5)$

5.
$$f(x) = 3 - 2x$$
, $(-1, 5)$ **6.** $g(x) = \frac{3}{2}x + 1$, $(-2, -2)$

7.
$$g(x) = x^2 - 4$$
,

$$(1, -3)$$

7.
$$g(x) = x^2 - 4$$
, $(1, -3)$ 8. $g(x) = 5 - x^2$, $(2, 1)$

9.
$$f(t) = 3t - t^2$$
, (0, 0)

10.
$$h(t) = t^2 + 3$$
, $(-2, 7)$

In Exercises 11-24, find the derivative by the limit process.

11.
$$f(x) = 3$$

12.
$$g(x) = -5$$

13.
$$f(x) = -5x$$

14.
$$f(x) = 3x + 2$$

15.
$$h(s) = 3 + \frac{2}{3}s$$

16.
$$f(x) = 9 - \frac{1}{2}x$$

17.
$$f(x) = 2x^2 + x - 1$$

18.
$$f(x) = 1 - x^2$$

19.
$$f(x) = x^3 - 12x$$

20.
$$f(x) = x^3 + x^2$$

21.
$$f(x) = \frac{1}{x-1}$$

22.
$$f(x) = \frac{1}{x^2}$$

23.
$$f(x) = \sqrt{x+1}$$

24.
$$f(x) = \frac{4}{\sqrt{x}}$$