Derivatives By the Limit Process #6-38 even

In Exercises 5-10, find the slope of the tangent line to the graph of the function at the specified point.

5.
$$f(x) = 3 - 2x$$
, $(-1, 5)$

6.
$$g(x) = \frac{3}{2}x + 1$$
, $(-2, -2)$

7.
$$g(x) = x^2 - 4$$
, $(1, -3)$

7.
$$g(x) = x^2 - 4$$
, $(1, -3)$ 8. $g(x) = 5 - x^2$, $(2, 1)$

9.
$$f(t) = 3t - t^2$$
, $(0,0)$

10.
$$h(t) = t^2 + 3$$
, $(-2, 7)$

In Exercises 11-24, find the derivative by the limit process.

11.
$$f(x) = 3$$

12.
$$g(x) = -5$$

13.
$$f(x) = -5x$$

14.
$$f(x) = 3x + 2$$

15.
$$h(s) = 3 + \frac{2}{3}s$$

16.
$$f(x) = 9 - \frac{1}{2}x$$

17.
$$f(x) = 2x^2 + x - 1$$

18.
$$f(x) = 1 - x^2$$

19.
$$f(x) = x^3 - 12x$$

20.
$$f(x) = x^3 + x^2$$

21.
$$f(x) = \frac{1}{x-1}$$

22.
$$f(x) = \frac{1}{x^2}$$

23.
$$f(x) = \sqrt{x+1}$$

24.
$$f(x) = \frac{4}{\sqrt{x}}$$

In Exercises 25–32, (a) find an equation of the tangent line to the graph of f at the indicated point, (b) use a graphing utility to graph the function and its tangent line at the point, and (c) use the derivative feature of a graphing utility to confirm your results.

25.
$$f(x) = x^2 + 1$$
, (2, 5)

26.
$$f(x) = x^2 + 2x + 1$$
, $(-3, 4)$

27.
$$f(x) = x^3$$
, (2, 8)

28.
$$f(x) = x^3 + 1$$
, (1, 2)

29.
$$f(x) = \sqrt{x}$$
, (1, 1)

30.
$$f(x) = \sqrt{x-1}$$
, (5, 2)

31.
$$f(x) = x + \frac{4}{x}$$
, (4, 5)

32.
$$f(x) = \frac{1}{x+1}$$
, (0, 1)

In Exercises 33–36, find an equation of the line that is tangent to the graph of *f* and parallel to the given line.

Function Line

33.
$$f(x) = x^3$$
 $3x - y + 1 = 0$
34. $f(x) = x^3 + 2$ $3x - y - 4 = 0$
35. $f(x) = \frac{1}{\sqrt{x}}$ $x + 2y - 6 = 0$
36. $f(x) = \frac{1}{\sqrt{x-1}}$ $x + 2y + 7 = 0$

- 37. The tangent line to the graph of y = g(x) at the point (5, 2) passes through the point (9, 0). Find g(5) and g'(5).
- **38.** The tangent line to the graph of y = h(x) at the point (-1, 4) passes through the point (3, 6). Find h(-1) and h'(-1).