Derivatives by the Limit Process #3 26-36

In Exercises 25–32, (a) find an equation of the tangent line to the graph of f at the indicated point, (b) use a graphing utility to graph the function and its tangent line at the point, and (c) use the derivative feature of a graphing utility to confirm your results.

25.
$$f(x) = x^2 + 1$$
. (2.5)

25.
$$f(x) = x^2 + 1$$
, (2,5) **26.** $f(x) = x^2 + 2x + 1$, (-3,4)

27.
$$f(x) = x^3$$
, (2, 8)

27.
$$f(x) = x^3$$
, (2, 8) **28.** $f(x) = x^3 + 1$, (1, 2)

29.
$$f(x) = \sqrt{x}$$
, $(1, 1)$

30.
$$f(x) = \sqrt{x-1}$$
, (5, 2)

31.
$$f(x) = x + \frac{4}{x}$$
, (4, 5)

29.
$$f(x) = \sqrt{x}$$
, (1, 1)
30. $f(x) = \sqrt{x-1}$, (5, 2)
31. $f(x) = x + \frac{4}{x}$, (4, 5)
32. $f(x) = \frac{1}{x+1}$, (0, 1)

In Exercises 33–36, find an equation of the line that is tangent to the graph of fand parallel to the given line.

Function

Line

33.
$$f(x) = x^3$$
 $3x - y + 1 = 0$
34. $f(x) = x^3 + 2$
 $3x - y - 4 = 0$
35. $f(x) = \frac{1}{\sqrt{x}}$
 $x + 2y - 6 = 0$
36. $f(x) = \frac{1}{\sqrt{x-1}}$
 $x + 2y + 7 = 0$