Larson 7.0 Section 2.5 #1-15 odd, #21-31 odd

In Exercises 1–16, find dy/dx by implicit differentiation.

1.
$$x^2 + y^2 = 36$$

3.
$$x^{1/2} + y^{1/2} = 9$$

5.
$$x^3 - xy + y^2 = 4$$

7.
$$x^3y^3 - y = x$$

9.
$$x^3 - 3x^2y + 2xy^2 = 12$$

11.
$$\sin x + 2\cos 2y = 1$$

13.
$$\sin x = x(1 + \tan y)$$

$$15. y = \sin(xy)$$

2.
$$x^2 - y^2 = 16$$

4.
$$x^3 + y^3 = 8$$

6.
$$x^2y + y^2x = -2$$

$$8. \ \sqrt{xy} = x - 2y$$

10.
$$2 \sin x \cos y = 1$$

12.
$$(\sin \pi x + \cos \pi y)^2 = 2$$

14.
$$\cot y = x - y$$

16.
$$x = \sec \frac{1}{y}$$

In Exercises 21–28, find dy/dx by implicit differentiation and evaluate the derivative at the indicated point.

	Equation	Point
21.	xy = 4	(-4, -1)

22.
$$x^2 - y^3 = 0$$

$$x^2 - y^3 = 0 (1, 1)$$

23.
$$y^2 = \frac{x^2 - 4}{x^2 + 4}$$

24.
$$(x + y)^3 = x^3 + y^3$$
 (-1, 1)

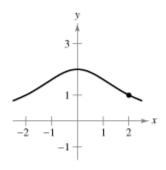
25.
$$x^{2/3} + y^{2/3} = 5$$

(2, 0)

26.
$$x^3 + y^3 = 4xy + 1$$

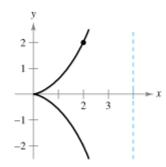
27.
$$tan(x + y) = x$$

28.
$$x \cos y = 1$$


$$\left(2, \frac{\pi}{3}\right)$$

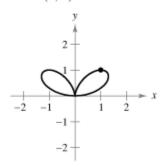
In Exercises 29–32, find the slope of the tangent line to the graph at the indicated point.

29. Witch of Agnesi:


$$(x^2+4)y=8$$

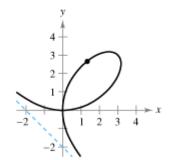
Point: (2, 1)

$$(4-x)y^2 = x^3$$


Point: (2, 2)

31. Bifolium:

$$(x^2 + y^2)^2 = 4x^2y$$


Point: (1, 1)

32. Folium of Descartes:

$$x^3 + y^3 - 6xy = 0$$

Point: $\left(\frac{4}{3}, \frac{8}{3}\right)$

