Larson 7.0 Section 2.5 #35-47

In Exercises 35–40, find d^2y/dx^2 in terms of x and y.

35.
$$x^2 + y^2 = 36$$

36.
$$x^2y^2 - 2x = 3$$

37.
$$x^2 - y^2 = 16$$

38.
$$1 - xy = x - y$$

39.
$$y^2 = x^3$$

40.
$$y^2 = 4x$$

In Exercises 41 and 42, use a graphing utility to graph the equation. Find an equation of the tangent line to the graph at the indicated point and sketch its graph.

41.
$$\sqrt{x} + \sqrt{y} = 4$$
, (9, 1)

42.
$$y^2 = \frac{x-1}{x^2+1}$$
, $\left(2, \frac{\sqrt{5}}{5}\right)$

In Exercises 43 and 44, find equations for the tangent line and normal line to the circle at the indicated points. (The *normal line* at a point is perpendicular to the tangent line at the point.) Use a graphing utility to graph the equation, tangent line, and normal line.

43.
$$x^2 + y^2 = 25$$

44.
$$x^2 + y^2 = 9$$

$$(4, 3), (-3, 4)$$
 $(0, 3), (2, \sqrt{5})$

- **45.** Show that the normal line at any point on the circle $x^2 + y^2 = r^2$ passes through the origin.
- **46.** Two circles of radius 4 are tangent to the graph of $y^2 = 4x$ at the point (1, 2). Find equations of these two circles.

In Exercises 47 and 48, find the points at which the graph of the equation has a vertical or horizontal tangent line.

47.
$$25x^2 + 16y^2 + 200x - 160y + 400 = 0$$

48.
$$4x^2 + y^2 - 8x + 4y + 4 = 0$$