Set 2: Multiple-Choice Questions on Limits and Continuity

1. $\lim_{x\to 2} \frac{x^2-4}{x^2+4}$ is

e on the inter-

one number c

pposite signs,

is is a special

rences, prodre k is a con-

- (A) 1 (B) 0 (C) $-\frac{1}{2}$ (D) -1 (E) ∞

- 2. $\lim_{x \to \infty} \frac{4 x^2}{x^2 1}$ is
- (A) 1 (B) 0 (C) -4 (D) -1 (E) ∞

- 3. $\lim_{x\to 3} \frac{x-3}{x^2-2x-3}$ is

- (A) 0 (B) 1 (C) $\frac{1}{4}$ (D) ∞ (E) none of these
- 4. $\lim_{x\to 0}\frac{x}{x}$ is

- (A) 1 (B) 0 (C) ∞ (D) -1 (E) nonexistent
- 5. $\lim_{x\to 2} \frac{x^3-8}{x^2-4}$ is

 - **(A)** 4 **(B)** 0 **(C)** 1 **(D)** 3 **(E)** ∞

- 6. $\lim_{x \to \infty} \frac{4 x^2}{4x^2 x 2}$ is

- (A) -2 (B) $-\frac{1}{4}$ (C) 1 (D) 2 (E) nonexistent
- 7. $\lim_{x \to \infty} \frac{5x^3 + 27}{20x^2 + 10x + 9}$ is
 - (A) $-\infty$ (B) -1 (C) 0 (D) 3 (E) ∞

- 8. $\lim_{x\to\infty} \frac{3x^2+27}{x^3-27}$ is

- (A) 3 (B) ∞ (C) 1 (D) -1 (E) 0

- 9. $\lim_{x\to\infty} \frac{2^{-x}}{2^x}$ is

- (A) -1 (B) 1 (C) 0 (D) ∞ (E) none of these

10.	$\lim_{x\to\infty}$	$\frac{2^{-x}}{2^x}$	is
-----	---------------------	----------------------	----

- (A) -1
- **(B)** 1
- $(\mathbf{C}) = 0$
- **(D)** ∞
- (E) none of these

11. If [x] is the greatest integer not greater than x, then $\lim_{x \to \infty} [x]$ is

- $(\mathbf{A}) \quad \frac{1}{2}$
- **(B)** 1
- (C) nonexistent
- $(\mathbf{D}) = 0$
- (E) none of these

12. (With the same notation)
$$\lim_{x\to -2} [x]$$
 is

- (C) -1
- (\mathbf{D}) 0
- (E) none of these

The graph of $y = \arctan x$ has

- (A) vertical asymptotes at x = 0 and $x = \pi$
- **(B)** horizontal asymptotes at $y = \pm \frac{\pi}{2}$
- (C) horizontal asymptotes at y = 0 and $y = \pi$
- **(D)** vertical asymptotes at $x = \pm \frac{\pi}{2}$
- (E) none of these

14. lim sin x

- (A) is -1
- **(B)** is infinity
- (C) oscillates between -1 and 1

- (**D**) is zero
- **(E)** is 1

15. The graph of
$$y = \frac{x^2 - 9}{3x - 9}$$
 has

- (A) a vertical asymptote at x = 3
- **(B)** a horizontal asymptote at $y = \frac{1}{3}$
- a removable discontinuity at x = 3
- **(D)** an infinite discontinuity at x = 3

(E) none of these

16. The function
$$f(x) = \begin{cases} x^2/x & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$

- (A) is continuous everywhere
- **(B)** is continuous except at x = 0
- (C) has a removable discontinuity at x = 0
- **(D)** has an infinite discontinuity at x = 0
- has x = 0 as a vertical asymptote

17.
$$\lim_{x\to 0} \frac{\sin x}{x^2 + 3x}$$
 is

- (A) 1 (B) $\frac{1}{3}$ (C) 3 (D) ∞

18. $\lim_{x\to 0} \sin \frac{1}{x}$ is

- (A) ∞
- **(B)** 1
- (C) nonexistent
- **(D)** -1
- (E) none of these
- 19. Which statement is true about the curve $y = \frac{2x^2 + 4}{2 + 7x 4x^2}$?
 - (A) The line $x = -\frac{1}{4}$ is a vertical asymptote.
 - **(B)** The line x = 1 is a vertical asymptote.
 - (C) The line $y = -\frac{1}{4}$ is a horizontal asymptote.
 - (D) The graph has no vertical or horizontal asymptotes.
 - (E) The line y = 2 is a horizontal asymptote.

Questions 20 through 24 are based on the function f shown in the graph and defined below:

 $y = \frac{1}{3}$
nuity at $x = \frac{1}{3}$

se

ese

one of these

- **20.** $\lim_{x\to 2} f(x)$
 - (A) equals 0
- (B) equals 1
- (C) equals 2

- (D) does not exist
- (E) none of these
- 21. The function f is defined on [-1,3]
 - (A) if $x \neq 0$
- **(B)** if $x \neq 1$
- (C) if $x \neq 2$

- **(D)** if $x \neq 3$
- (E) at each x in [-1,3]
- **22.** The function f has a removable discontinuity at
 - $(\mathbf{A}) \quad x = 0$
- **(B)** x = 1
- (C) x = 2
- **(D)** x = 3
- (E) none of these
- 23. On which of the following intervals is f continuous?
 - $(\mathbf{A}) \quad -1 \le x \le 0$
- **(B)** 0 < x < 1
- (C) $1 \le x \le 2$

- **(D)** $2 \le x \le 3$
- (E) none of these

24. The function f has a jump discontinuity a	24.	The function	f has a	jump	discontinuity	at
--	-----	--------------	---------	------	---------------	----

- (A) x = -1
 - **(B)** x = 1
- (C) x = 2

- **(D)** x = 3
- (E) none of these

25.
$$\lim_{x \to \infty} \frac{2x^2 + 1}{(2 - x)(2 + x)}$$
 is

- (A) -4 (B) -2 (C) 1

- (\mathbf{D}) 2
- (E) nonexistent

26.
$$\lim_{x\to 0} \frac{|x|}{x}$$
 is

- $(\mathbf{A}) = 0$
- (B) nonexistent
- **(C)** 1 **(D)** -1
- (E) none of these

27.
$$\lim_{x\to\infty} x \sin\frac{1}{x}$$
 is

- $(\mathbf{A}) \quad 0$
- **(B)** ∞ **(C)** nonexistent **(D)** -1
- (\mathbf{E}) 1

28.
$$\lim_{x\to\pi} \frac{\sin(\pi-x)}{\pi-x}$$
 is

- (A) 1 (B) 0 (C) ∞ (D) nonexistent (E) none of these

29. Let
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{if } x \neq 1 \\ 4 & \text{if } x = 1 \end{cases}$$

Which of the following statements is (are) true?

- $\lim_{x \to 1} f(x)$ exists.
- II. f(1) exists.
 - III. f is continuous at x = 1.
- **(B)** II only
- (D) none of them (E) all of them
- (C) I and Π

30. If
$$\begin{cases} f(x) = \frac{x^2 - x}{2x} & \text{for } x \neq 0, \\ f(0) = k, & \text{for } x \neq 0, \end{cases}$$

and if f is continuous at x = 0, then k =

- **(A)** -1 **(B)** $-\frac{1}{2}$ **(C)** 0 **(D)** $\frac{1}{2}$ **(E)** 1

31. Suppose
$$\begin{cases} f(x) = \frac{3x(x-1)}{x^2 - 3x + 2} & \text{for } x \neq 1, 2, \\ f(1) = -3, \\ f(2) = 4. \end{cases}$$

Then f(x) is continuous

- (A) except at x = 1
- **(B)** except at x = 2
- (C) except at x = 1 or 2
- **(D)** except at x = 0, 1, or 2 **(E)** at each real number

- **32.** The graph of $f(x) = \frac{4}{x^2 1}$ has
 - (A) one vertical asymptote, at x = 1
 - **(B)** the y-axis as vertical asymptote
 - the x-axis as horizontal asymptote and $x = \pm 1$ as vertical asymptotes **(C)**
 - two vertical asymptotes, at $x = \pm 1$, but no horizontal asymptote **(D)**
 - **(E)** no asymptote
- Suppose $\lim_{x \to -3^-} f(x) = -1$, $\lim_{x \to -3^+} f(x) = -1$, and f(-3) is not defined. Which of the following statements is (are) true?
 - $\lim_{x \to -3} f(x) = -1.$
 - II. f is continuous everywhere except at x = -3.
 - III. f has a removable discontinuity at x = -3.
 - (A) None of them
- **(B)** I only
- (C) III only

- (**D**) I and III only
- (E) All of them
- **34.** The graph of $y = \frac{2x^2 + 2x + 3}{4x^2 4x}$ has
 - (A) a horizontal asymptote at $y = +\frac{1}{2}$ but no vertical asymptotes
 - **(B)** no horizontal asymptotes but two vertical asymptotes, at x = 0 and x = 1
 - a horizontal asymptote at $y = \frac{1}{2}$ and two vertical asymptotes, at x = 0 and x = 1
 - a horizontal asymptote at $x = \frac{5}{2}$ but no vertical asymptotes
 - a horizontal asymptote at $y = \frac{1}{2}$ and two vertical asymptotes, at $x = \pm 1$
- 35. Let $f(x) = \begin{cases} \frac{x^2 + x}{x} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$.

Which of the following statements is (are) true?

- I. f(0) exists. $\lim_{x\to 0} f(x)$ exists.
 - III. f is continuous at x = 0.
- (A) I only (B) II only (C) I and II only
- all of them **(D)** (E) none of them
- **36.** If $y = \frac{1}{2 + 10^{\frac{1}{x}}}$, then $\lim_{x \to 0} y$ is
 - (A) 0 (B) $\frac{1}{12}$ (C) $\frac{1}{2}$ (D) $\frac{1}{3}$ (E) nonexistent
- **37.** $\lim_{x \to 0} \sqrt{3 + \arctan \frac{1}{x}}$ is
 - (A) $-\infty$ (B) $\sqrt{3-\frac{\pi}{2}}$ (C) $\sqrt{3+\frac{\pi}{2}}$ (D) ∞ (E) none of these
 - (E) none of these

nt

ione of these

one of these

1 or 2