1. Practice Midterm 2

Problem 1. A particle moves in such a way that its distance from the origin at time t is given by $s(t)=2 \sqrt{t^{2}+4}$. If $v(t)$ is the velocity of the particle at time t, what is

$$
\lim _{t \rightarrow \infty} v(t) ?
$$

(a) 2
(b) $\frac{1}{2}$
(c) $\frac{1}{4}$
(d) $\frac{1}{\sqrt{2}}$
(e) 0
(f) ∞

Problem 2. What are the global maximum and minimum values of the function

$$
f(x)=\frac{x}{1+x^{2}} ?
$$

(a) 2 and -2
(b) 1 and - 1
(c) $1 / 2$ and $-1 / 2$
(d) 2 and 0
(e) 4 and -4
(f) 1 and - 1

Problem 3. A stock market analyst sold a monthly newsletter to 320 subscribers at a price of $\$ 10$ each. She discovered that for each $\$ 0.25$ increase in the monthly price of the newsletter, she would lose 2 subscriptions. If she sets the price of the newsletters to bring in the greatest total monthly income, what will that income be?
(a) $\$ 3200$
(b) $\$ 4400$
(c) $\$ 5000$
(d) $\$ 5800$
(e) $\$ 6500$
(f) $\$ 7200$

Problem 4. The curve

$$
y=x^{3}+3 x^{2}+a x+b
$$

has one inflection point. The tangent line at this inflection point is $y=3 x+4$. Find the constants a and b.

Problem 5. A right circular cylinder is inscribed in a cone with height 1 meter and base radius 1 meter. What is the largest possible volume of such a cylinder?

Problem 6. A particle moving on the real line has an acceleration function of $a(t)=\cos (t)+\sin (t)$. If the particle is at the orgin when $t=0$ and has a velocity of 5 when $t=0$, what is the position function for the particle?

Problem 7. Let $f(x)=\frac{x^{2}-4}{x^{2}+4}$

Find the x -intercepts and y-intercepts of $f(x)$.

Find the intervals of increase and decrease of $f(x)$.

Find the local maxima and local minima of $f(x)$.

Find the intervals of concavity of $f(x)$.

Find the inflection points of $f(x)$.

Find the horizontal, vertical and slant asymptotes of $f(x)$.

Use all of the above information to carefully graph $f(x)$.

Problem 8. Find the value of c (if any) that satisfies the conclusion of the Mean Value Theorem for the function $f(x)=\frac{1}{1+x}$ on the interval $[0,1]$.
a) $\frac{1}{2}$
(b) $\frac{1}{4}$
(c) $\frac{\sqrt{2}}{2}$
(d) $2-\sqrt{2}$
(e) $\sqrt{2}-1$
(f) no values

